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Abiotic stress is a stress that occurs as a result of damage done to plants by non-living and often tangible factors such as intense sunlight, 
wind etc. This naturally occurring stress is most detrimental to plant health when it influences the environment beyond its normal range 
of variation. Since abiotic stresses originate from surrounding environment therefore, these are more harmful for plants than animals 
as plants are dependent on environmental factors. Research has also shown that abiotic stressors are at their most harmful when they 
occur together, in combinations of abiotic stress factors. Extended exposure to extreme temperatures, high salinity, etc results in certain 
physiological and biochemical changes in plants that adversely affect the growth and productivity of crops worldwide.   Plant biodiversity 
is determined by many things, and one of them is abiotic stress. If an environment is highly stressful, biodiversity tends to be low. If abiotic 
stress does not have a strong presence in an area, the biodiversity will be much higher. This means that species are more likely to become 
plants population threatened, endangered, and even extinct, when and where abiotic stress is especially harsh. Thus, abiotic stress leads to 
altered metabolism and damage to bio-molecules and is responsible for reduced yield in several major crops. In this review, we summarize 
recent progress on systematic analysis of plant responses to abiotic stress. Abiotic stresses are serious threats to agriculture and the 
environment which have been exacerbated in the current century by global warming and industrialization. 

1.  Introduction

Abiotic stresses are serious threats to agriculture and the 
environment which have been exacerbated in the current 
century by global warming and industrialization. Today, in a 
world of 7 billion people, agriculture is facing great challenges 
to ensure a sufficient food supply while maintaining high 
productivity and quality standards. In addition to an ever 
increasing demographic demand, alterations in weather 
patterns due to changes in climate are impacting crop 
productivity globally. Unfavorable climate (resulting in 
abiotic stresses) not only causes changes in agro-ecological 
conditions, but indirectly affects growth and distribution of 
incomes, and thus increasing the demand for agricultural 
production (Fukuda, 2000).

Abiotic stress is defined as the negative impact of non-living 
factors on the living organisms in a specific environment 
(Pennell and Lamb, 1997). Abiotic stresses include drought, 
excess water, salinity, heat, cold, wounding, exposure 
to xenobiotics (now including chemical pollution) and 
UV radiation. Furthermore plants are also confronted by 
biotic stresses through microbial pathogens such as fungi, 

nematodes and bacteria (Tippmann et al., 2006). Some of the 
most serious effects of abiotic stresses occur in the arid and 
semiarid regions where rainfall, high evaporation low, native 
rocks, saline irrigation water, and poor water management 
all contribute in agricultural areas (Vahdati and Leslie, 2013). 
Stress research has traditionally focussed on single stress 
aspects. However, in their natural environment, plants have 
to adapt to numerous environmental stresses at the same 
time and different stresses can occur at different stages 
of the plant’s life cycle. The adaptation to various stresses 
has led to the development of common stress transduction 
pathways and includes, among others, the increased synthesis 
of secondary metabolites, Ca2+ fluxes, an oxidative burst 
and an overlapping set of stress response genes (Cheong 
et al., 2002; Roberts et al., 2002). Abiotic stress leads to 
a series of morphological, physiological, biochemical and 
molecular changes in plants that adversely affect growth 
and productivity. Stresses also affect the biosynthesis, 
concentration, transport, and storage of primary and 
secondary metabolites. As a more comprehensive view of 
these processes evolves, applications to reducing plant stress 
are emerging (Vahdati and Leslie, 2013). 
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Abiotic stress comes in many forms. The most common of 
the stressors are the easiest for people to identify, but there 
are many other, less recognizable abiotic stress factors which 
affect environments constantly. The most basic stressors 
include: high winds, extreme temperatures, drought, flood, 
and other natural disasters, such as tornadoes and wildfires. 
The lesser-known stressors generally occur on a smaller 
scale and so are less noticeable, but they include: poor 
edaphic conditions like rock content and pH, high radiation, 
compaction, contamination, and other, highly specific 
conditions like rapid rehydration during seed germination 
(Jump et al., 2006).

2.  Features of Salinity, Cold and Drought Stress

Salinity, cold and drought stress are all osmotic stresses: 
they cause a primary loss of cell water, and, therefore, a 
decrease of cell osmotic potential. However, the elicitor 
of cell water loss differs between stresses: i) salinity stress 
decreases cell water content due to the decrease of external 
water potential, caused by the increased ion concentration 
(mainly Na+ and Cl-), turning more difficult water uptake by 
roots and water translocation to metabolically active cells; 
ii) cold stress decreases cell water content due to the so-
called physiological drought, i.e., the inability to transport 
the water available at the soil to the living cells, mainly the 
ones of the leaf mesophyll; iii) the decrease of the cell water 
content under drought stress is due to water shortage in soil 
or/and in the atmosphere. Anyway, dehydration triggers the 
biosynthesis of the phytohormone abscisic acid (ABA) and it 
has been known for a long time that a significant set of genes, 
induced by drought, salt, and cold stresses, are also activated 
by ABA (Boudsocq and Lauriere, 2004). 

Different combinations of biotic and abiotic stresses are 
presented in the form of a matrix to demonstrate potential 
interactions that can have important implications for 
agriculture. Different interactions are color coded to indicate 
potential negative [i.e. enhanced damage or lethality owing 
to the stress combination (purple)] or potential positive [i.e. 
cross-protection owing to the stress combination (green)] 
effects of the stress combination on plant health. However, 
the potential effects of stress combination could vary 
depending on the relative level of each of the different stresses 
combined (e.g. acute versus low) and the type of plant or 
pathogen involved. Data to generate the matrix was obtained. 

3.  Temperature

Temperature stress is becoming the major concern for 
plant scientists worldwide due to the changing climate. The 
difficulty of climate change is further added considering its 
precisely projecting potential agricultural impacts (Watanabe 
and Kume, 2009; Shah et al., 2011). Temperature stress has 
devastating effects on plant growth and metabolism, as these 
processes have optimum temperature limits in every plant 
species. Global climate change is making high temperature 

(HT) a critical factor for plant growth and productivity; HT 
is now considered to be one of the major abiotic stresses 
for restricting crop production (Hasanuzzaman and Hossain, 
2012).

The most observed effect of heat stress on plants is 
the retardation of growth. As heat stress often occurs 
simultaneously with drought stress, the combination of 
drought and heat stress induce more detrimental effect on 
growth and productivity of crops than when each stress was 
applied individually (Prasad et al., 2008). In higher plants, 
heat stress significantly alters cell division and cell elongation 
rates which affect the leaf size and weight. However, it was 
reported that heat stress resulted in significant increases in 
leaf numbers, particularly when reproductive development 
was arrested without any decrease in leaf photosynthetic 
rates (Prasad et al., 2006; Prasad et al., 2008). Exposure 
of plants to severe heat stress decreased the stem growth 
resulting in decreased plant height (Prasad et el., 2006; 
Rahman, 2004; Ahamed et al., 2010) reported that plant 
height of wheat plant ranges from 66.4–97.3 cm and 55.7–82.3 
cm in normal and heat stress condition, respectively. While 
studying with T. aestivum, Ahamed et al., (2010). observed 
that sowing time mediated heat stress negatively influenced 
the plant height and number of tillers of 4 different genotypes. 
In a recent study, Al-Busaidi et al. (2012) observed that high 
atmospheric temperature causes significant water loss which 
negatively influenced the growth and biomass production in 
biofuel plant, Jatropha curcas. Parallel to shoot growth heat 
stress often decreases root growth, number of roots and 
root diameter (Porter and Gawith, 1999). Recently, Johkan 
et al. (2011) observed that the number of tillers in wheat 
plants decreased in response to HT, especially high night-time 
temperatures, however shoot elongation was promoted. 
Prasad et al. (2011) reported that high night temperature 
(31.9 °C/27.8 °C) decreased chlorophyll (Chl) content and 
photosynthetic rate by 8% and 22%, respectively, compared 
to optimum night temperature. In a recent study, Prasad et 
al. (2011) observed that spring wheat plants grown under HT 
(31/18 °C) showed a significant reduction in number of grains 
spike–1 (50%), total dry weight (20%), grain yield (39%) and 
harvest index (24%) as compared to optimum temperature 
(24/14 °C).

High temperature decreased shoot dry weight, relative 
growth rate (RGR) and net assimilation rate (NAR) in maize, 
millet and sugarcane (Wahid, 2007; Ashraf and Hafeez, 
2004). In their review, Wahid (2007) mentioned that HT can 
cause considerable pre- and post-harvest damages, including 
scorching of leaves and twigs, sunburns on leaves, branches 
and stems, leaf senescence and abscission, shoot and root 
growth inhibition, fruit discoloration and damage. High 
temperature also alters the internal morphology (anatomy) 
of plants and these changes are generally similar to those 
under drought stress. Under HT stress, there is a general 
tendency towards reduced cell size, closure of stomata 

864



© 2017 PP House

and curtailed water loss, increased stomatal density and 
trichomatous densities, and larger xylem vessels in both 
roots and shoots (Wahid, 2007). According to Angadi and 
Cutforth (2000), temperatures below 10 °C result in slower 
and reduced growth and premature stem elongation in B. 
napus, B. rapa and Raphanus sativus. It is well reported that 
plants at their seedling stage are very much sensitive to cold 
stress. At early stage of plant growth, and various phenotypic 
symptoms in response to chilling stress are surface lesions, 
chlorosis, necrosis, desiccation, tissue break down and water 
soaked appearance of tissues, reduced leaf expansion, wilting 
(Solanke and Sharma, 2008; Jiang et al., 2002). Nahar et 
al. (2009) observed varieties of cold injury symptom is rice 
including stunted growth, yellowing of leaves, abnormal 
number of tiller, malformed grain, abnormal colors in grain.

4.  Programmed Cell Death as a Response to High Light

4.1.  UV and Drought Stress in Plants

FBecause of their sessile nature, plants are unable to avoid 
fluctuating environment conditions like high light, ultraviolet 
radiation, drought, salt stress, heat, cold or flooding. Upon 
certain threshold of these changes, plant cells can no longer 
maintain proper metabolic processes and programmed cell 
death (PCD) is induced.

There are two main categories of PCD in plants: 
developmentally- and environmentally-induced PCD. Example 
of developmentally- induced PCD is a formation of unisexual 
flowers in monoecious species (e.g. maize), bearing generative 
organs of both sexes on the same plant. Sex determination in 
these species involves the developmental arrest of one of the 
organ primordia-either the 2013 Wituszyńska and Karpiński; 
licensee InTech. This is an open access article distributed 
under the terms of the Creative Commons Attribution 
License (http://creativecommons.org/licenses/by/3.0), which 
permits unrestricted use, distribution, and reproduction in 
any medium, provided the original work is properly cited. 
Female or male within a bisexual floral meristem (Dellaporta 
and Calderane, 1993). The production of complex leaf shapes 
also frequently employs PCD. Such remodeling of leaf blades 
occurs in Monstera obliqua, Monstera deliciosa or lace plant 
(Gunawardena et al., 2004). These species tend to induce 
death pathway in some patches of cells and thus form 
distinctive perforations within the leaf (Gunawardena, 2008).

Moreover, PCD during senescence helps to block spreading 
of diseases to still vital parts of the plant (Gan and Amasino, 
1995). Under heat stress leaf temperature and stomatal 
conductance increased significantly, whereas under drought 
and drought + heat stress condition photosynthesis and 
stomatal conductance decreased and leaf temperature 
increased as compare to control.

5.  High and Excess Light Stress

Light is an essential factor in the regulation of plant growth, 

development and stress responses but it is also responsible 
for the production of reactive oxygen species leading 
to PCD. The cell death phenotype of many lesion mimic 
mutants of Arabidopsis thaliana and Zea mays is dependent 
on light (Jabs et al., 1996; Mach et al., 2001; Gray et al., 
2002). Plant cells have been equipped with sophisticated 
light-perception mechanisms and signaling pathways that 
are very important for the plant defense. Three families of 
photoreceptors collecting different light qualities exist in 
plant cells: phytochromes (PHY), cryptochromes (CRY) and 
phototropins (PHOT).

In the last decade a significant progress has been made in 
improving light-induced oxidative stress tolerance in plants. 
Various components of anti-oxidative system involved 
in ROS scavenging have been up- or down-regulated to 
develop transgenic lines with altered antioxidants levels. 
Over-expression of enzymes involved in AsA biosynthesis has 
been shown to confer oxidative stress tolerance in tomato 
plants (Zhang et al., 2011). Increased AsA content has been 
also demonstrated to enhance high light stress tolerance in 
Arabidopsis (Wang et al., 2010). Higher concentration of GSH 
has proven to protect potato plants against oxidative damage 
(Eltayeb et al., 2010). Moreover, reduced level of light-
mediated cellular damage has been observed in transgenic 
tobacco plants over-expressing chloroplast-localized Cu/
Zn-SOD (Gupta et al., 1993) and thylakoid membrane- 
bound APX (Yabuta et al., 2002). MDHAR over-expression in 
Arabidopsis has been demonstrated to enhance the tolerance 
towards photo-oxidative stresses (Li et al., 2010). Moreover, 
some studies have reported that combined expression of 
antioxidant enzymes in transgenic plants acts synergistically 
on stress tolerance, e.g. simultaneous over-expression of 
Cu/Zn-SOD and APX in tobacco chloroplasts enhances the 
resistance to the photo-oxidative stress in comparison to their 
single over-expression (Tang et al., 2006).

6.  UV Radiation Stress

Being exposed to sunlight, plants need to deal with the 
damaging effect of ultraviolet (UV) radiation which reduces 
the genome stability, impeding their growth and productivity. 
These effects result from damage to cell components including 
not only nucleic acids, but also proteins and membrane lipids. 
Upon UV exposure, strongly mutagenic cross-linked forms of 
DNA can be produced (Britt, 1999). In order to minimize effects 
of UV radiation, plants accumulate UV-absorbing secondary 
metabolites, perform the monomerization of UV-induced 
pyrimidine dimers (DNA repair) and neutralize generated 
ROS (Molinier et al., 2005, Kunz et al., 2006). UV radiation 
consists of UV-C (below 280 nm), UV-B (280–320 nm) and 
UV-A (320–390). Although UV-C is not physiologically relevant 
to plants since it is efficiently blocked by the stratosphere, the 
UV-C-triggered cell damage is comparable to induced with 
UV-B radiation, which reaches Earth’s surface (Danon and 
Gallosis, 1998). Therefore, UV-C radiation has been widely 
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used to study DNA damage and repair mechanisms upon 
UV stress (Sinha et al., 2002). UV has been demonstrated to 
trigger apoptosis in animals (Babu et al., 2003) and apoptosis-
like changes in Arabidopsis, including DNA laddering, changes 
in nucleus morphology (crescent shape) and its fragmentation 
(Danon and Gallosis, 1998). It has been also proven to induce 
oxidative burst in plant cells (Babu et al., 2003), considered 
as the main cause of cell death, which aims at the limitation 
of damage spreading. Light is necessary for UV-C-triggered 
cell death and caspase-like proteases participating in this 
process since caspase-inhibitors are able to block the onset 
of DNA fragmentation (Essemine et al., 2010, Zhang et al., 
2009). Recent study performed on Arabidopsis protoplasts 
has shown that during the early stage of UV stress, a burst of 
ROS in chloroplasts and adjacent mitochondria is detected. 
Mitochondria dysfunction has been also observed, manifested 
by changes in their distribution, mobility and the loss in 
mitochondrial trans-membrane potential. Moreover, the 
pre-incubation with antioxidant molecule - ascorbic acid 
or inhibitor of photosynthetic electron transport - DCMU 
decreases the ROS production and retards PCD. These 
results prove that mitochondria and ROS act as mediators 
in the UV-C-induced cell death (Gao et al., 2008) and that 
AsA can be considered as an important antioxidant during 
this process (Gao and Zhang, 2008), which is consistent 
with what has been reported in various types of PCD. It has 
been also shown that Arabidopsis proteins AtDAD1 and 
AtDAD2 (defender against apoptotic death), localized in 
the endoplasmic reticulum membrane can suppress DNA 
fragmentation, indicating an involvement of the ER in UV-C-
triggered PCD pathway (Essemine et al., 2010). The microarray 
approach has identified numerous genes responsible for ROS 
scavenging, signalling, transcription regulation and involved 
in DNA replication or conformation changes that have been 
deregulated after exposure to UV-C radiation (Molinier et 
al., 2005). Metacaspase-8 (AtMC8) has been proven to be 
strongly up-regulated by UV-C. Over-expression of AtMC8 
in Arabidopsis has resulted in more severe cell death, while 
knocking-out AtMC8 has reduced the UV-C-triggered PCD, 
which suggests that metacaspase-8 is a part of PCD pathway 
activated by UV radiation (He et al., 2008). The activation of 
PCD program upon UV helps plants in eliminating damaged 
cells to control cell quality and quantity after the trauma.

7.  Drought Stress-soil Water Deficit

Drought is one of the most unfavorable environmental 
factors that affects growth and development of plants and 
consequently limits plant productivity. Plants have developed 
specific acclimation and adaptation mechanisms to survive the 
soil water deficit. In response to drought, plants can exhibit 
either escape (ability to complete the life cycle before severe 
stress) or resistance mechanisms. Resistance mechanisms 
include drought avoidance and drought tolerance. The latter 
depends on the cell turgor maintenance by accumulating 

osmolytes and soluble sugars (Harb et al., 2010). There are 
several examples of molecules that help to maintain an 
osmotic balance under dehydration conditions: sugars, polyols 
and proline (Yoshiba et al., 1997). Proline is accumulated in the 
cytoplasm and chloroplast stroma while other solutes (sugars, 
organic acids, potassium) are cumulated in the vacuole. When 
the cellular water content decreases, they stabilize cellular 
structures through hydrophilic interactions and hydrogen 
bonding (Verslues and Sharma, 2010).

In figure 1 it shows unique physiological characteristics of 
drought and heat stress combination. A combination of 
drought and heat stress is shown to be different from drought 
or heat stress by having a unique combination of physiological 
parameters. 

Photosynthesis is one of major processes affected by water 
deficit since stomata closure causes reduced CO2 diffusion to 
the chloroplast. As a result of the inhibition of photosynthesis 
and the predominance of photorespiration, ROS are generated 
(Noctor et al., 2002). It has been demonstrated that in 
drought-stressed plants, the ABA-controlled stomata closure 
is mediated by H2O2 (Pei et al., 2000). Under severe drought 
stress, some antioxidant enzymes have been shown to be 
highly induced (Dat et al., 2000). However, studies on many 
drought-stressed crop species showed an inconsistency in 
their expression since in some cases they have been induced, 
but in other repressed, suggesting that different ROS balance 
may be required during different response phases (Cruz and 
Carvalha, 2008). Recent studies have shown that the water 
deficit triggers PCD not only in green tissues but also in plant 
root tips. Apical meristem cells of primary roots undergoing 
PCD, demonstrate increased size of vacuole, degradation of 
organelles and the collapse of plasma membrane (Duan et 
al., 2010).

7.1.  ROS - reactive oxygen species

During water deficit, ROS are responsible for the induction of 
leaf senescence, which is executed through the programmed 
cell death and plays an important role in the plant survival 
(Petrov et al., 2015). This is an active, genetically controlled 
process which is initiated to isolate and remove damaged 
tissues thereby ensuring the survival of the organism.  It 
contributes to the nutrients remobilisation during stress and 
allows the rest of plant to benefit from them and stay alive. 
Plants can perceive biotic and abiotic stresses via specific 
receptors. The stress recognition is usually followed by 
production of messengers such as reactive oxygen species 
(ROS) or Inositol-1, 4, 5-triphosphate (IP3), and modulatation 
of intracellular calcium (Ca2+). Production of these early 
messengers can be receptor mediated, however, in many 
abiotic stresses (e.g. drought, cold, salt stress) membrane 
over-excitation can directly lead to ROS generation. The 
messengers also seem to influence each other, e.g., via IP3 
gated calcium channels. Receptors, ROS or Ca2+ dependent 
signals initiate specific phosphorylation cascades (e.g. mitogen 
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activated protein kinases - MAPK, calcium dependent protein 
kinases - CDPK) and finally interact with the promotor regions 
of transcription factors (TF) and response genes. The regulation 
of gene transcription can additionally depend on the activity of 
plants hormones and other regulatory molecules (e.g. Abscidic 
acid - ABA, salicylic acid - SA, Jasmonic acid - JA, ethylene - ET). 
The plant hormones can also influence the ROS and Ca2+ levels 
and initiate a second round of signaling.

8.  Wind Stress

It is commonly thought that wind must play a part in the 
formation of this peculiar forest; to date there is no consensus 
about how wind influences elfin forest stature. Some authors 
have viewed elfin stature as the result of severe mechanical 
stress (Beard, 1949; Howard, 1968). Others have suggested 
that elf-in stature can be attributed to wind-induced water or 
nutrient stress (Schimper, 1903; Shreve, 1914; Seifriz, 1953; 
Odum, 1970; Weaver et al., 1973; Leigh, 1975). The common 
feature of all these explanaions is that they rest upon the 
assumption that elfin stature is a pathological condition.

Plants generally respond to environmental stress by adjusting 
their growth to reduce that stress (Levitt, 1972; Evans, 1972). 
For instance, Jacobs (1954) attached guy wires to young Pinus 
radiata D. Don on an Australian plantation to prevent their 
swaying in the wind. He then compared their growth to that 
of unguyed trees. The unguyed trees grew less in height and 
more in trunk diameter than the trees with the mechanical 
support of the guy wires.

Thigmomorpho-genetic response to mechanical stress, 
especially wind stress, has been observed in a wide variety 
of vascular plants (Jacobs, 1954; Whitehead, 1962; Larson, 
1963; Neel and Harris, 1971; Jaffe, 1973, 1976, 1980; Grace 
and Russell, 1977; Ashby et al., 1979). In trees the most 
conspicuous thigmomorpho-genetic response is retarded 
stem elongation and increased radial growth (Jacobs, 1954; 
Larson, 1963, 1965; Neel and Harris, 1971; Ashby et al., 1979).

Grubb and Tanner (1976) and Grubb (1977) have suggested 
that wind-clipping is rare in tropical mountains, and that wind 
therefore has little influence upon the regulation of forest 
stature. However, growth responses such as those observed 
in D. pittieri might have major effects upon forest stature in 
windy locales. In general, ridges are windier than adjacent 
valleys and slopes (Geiger, 1961; Grace, 1977). Persistent 
strong winds are a commonly noted feature of the elfin forest 
environment (Shreve, 1914; Brown, 1919; Gleason and Cook, 
1927; Seifriz, 1923, 1943, 1953; Beard, 1955; Baynton, 1968; 
Lawton, 1980). If, in response to the mechanical stresses 
of wind, stem elongation is retarded, while radial growth 
continues apace, then trees of similar age should be shorter 
and have thicker stems on ridges. Presumably, short, thick 
trunks, branches and twigs would be less susceptible to 
wind-clipping. Therefore the absence of conspicuous wind-
clipping is not necessarily a good indication that wind plays an 

unimportant role in the regulation of forest stature.

9.  Conclusion

Abiotic stresses will remain a challenge to the natural 
environment and agriculture. The early evolution of land 
plants took place under dry conditions with extremes of 
temperature and harsh sunlight, while crop domestication 
occurred later in more favorable environments. Subsequently, 
the selection of plants for productivity traits did not always 
result in crops that are productive under random stress 
factors, although the natural variations of crops are genetic 
reservoirs for abiotic stress adaptation. 
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