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The research was undertaken during June-October 2020 at Seethanagaram and Draksharam villages of East Godavari 
district, Andhra Pradesh, India with an objective to evaluate efficiency of genomic selection models involving 1545 

recombinant inbred lines (RILs) derived from eleven bi-parental populations in Rice.  During June-October 2020, the F7 RILs 
were screened in two hot spot locations. The genotyping was done with Infinium platform having 6564 SNP markers. Five 
models were used rrBLUP, BayesA, BayesB, BayesCPi and GBLUP to train the statistical model for calculation of marker 
effects and genomic estimated breeding values (GEBVs). The prediction accuracy (data fit) of training set across models ranged 
0.63–0.72, lowest and highest prediction accuracies were observed with rrBLUP and GBLUP models respectively. Tenfold 
cross validation with different approaches, the average prediction accuracy ranged from 0.60 (rrBLUP, BayesA, BayesB and 
BayesCPi) –0.72 (GBLUP). BayesB and GBLUP models exhibit higher prediction accuracies compared to other models 
studied. The predictive ability increased dramatically with more SNPs included in analysis until 2000 markers with average 
prediction accuracy of 0.681, no significant improvement beyond this was observed. The results are lucrative, all in all, high 
prediction accuracies observed in this study suggest genomic selection as a very promising strategy while breeding for sheath 
blight resistance in rice to increase genetic gain.
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1.   INTRODUCTION

Sheath blight is considered as one of the devastating 
diseases of rice worldwide leading to significant yield 

losses in many rice growing counties, it is caused by a 
necrotrophic pathogen Rhizoctonia solani (Rao et al., 2020). 
Because of unique symptoms exhibited by this disease it is 
referred as “rotten foot stalk”, “mosaic foot stalk” and “snake 
skin disease” (Molla et al., 2020; Zhang et al., 2019b). 

This disease has become popular recently because of 
intensification of rice-cropping systems with the usage 
of higher amount of nitrogen and development of rice 
cultivars with high yielding, high tillering and semi-dwarf 
stature which suit to high plant densities (Yellareddygari 
et al., 2014). In India its prevalence is mainly confined to 
coastal places where farmers grow high yielding varieties. 
Frequent rainfall, high temperature (28–32°C) coupled 
with high humidity 95–97% favors disease development 
hence the disease is very common in rainy season in India 
(Amandeep et al., 2015). 

The most economic and effective strategy in order to control 
the disease is, development of cultivars with resistance to 
sheath blight but only few varieties are resistant and few 
reliable QTLs have been discovered so far which are linked 
to sheath blight resistance (Chen et al., 2019). Because of 
lack of good number of authentic and reliable sources of 
resistance, breeding for sheath blight has been challenging 
in Rice (Zuo et al., 2010; Srinivasachary, Willocquet and 
Savary, 2011). Upon intensive study it’s believed to be 
controlled by many quantitative trait loci scattered across 
the genome (Zuo et al., 2013). It is widely believed that 
quantitative nature of resistance could be the expedient for 
evolving varieties with durable/horizontal resistance (Poland 
et al., 2013).

Because of complex inheritance it very difficult to exploit 
and tap the genomic regions using classical approaches of 
QTL mapping (linkage and LD analysis). One of popular 
approach which is very popular now a days which can help 
in breeding for complex traits is genomic selection (GS). 
Genomic selection uses large number of markers scattered 
across the genome which are in LD with many genomic 
regions of interest (Meuwissen et al., 2001). It has been 
shown to be effective for improving quantitative traits, both 
in simulations (Bernardo and Yu, 2007) and in empirical 
studies (Heslot et al., 2013; Lorenz et al., 2012; Rutkoski 
et al., 2011, 2012 and 2014). In many studies bi-parental 
populations with good genetic relationship between 
the training and test populations have exhibited better 
prediction accuracies in comparison with three way and 
complex cross populations, the reason could be controlled 
population structure and greater linkage disequilibrium 
between markers and QTLs (Bernardo and Yu, 2007).

The prediction accuracy of training set relies heavily on 
many factors like, genetic relationship between populations 
which are part of training set and test set, marker density 
(number and distribution of markers), size of the training 
set, statistical models used for analysis etc. The current 
investigation was done with recombinant inbred lines 
developed from eleven bi-parental populations to study the 
efficiency of different statistical models used for genomic 
selection and the effect of marker density on accuracy to 
predict sheath blight resistance in rice.

2.  MATERIAL AND METHODS

2.1.  Parent material and phenotyping of F7 RILs for ShB

A total of 250 germplasm lines were screened for 
identification of lines which are resistant and susceptible 
to Sheath blight disease during June – October 2016 at 
Seethanagaram village of East Godavari district, Andhra 
Pradesh, India (Latitude 16008’ N and Longitude 81008’ 
E) by pathology team of Pioneer Hi-Bred Private Limited. 
Based on earlier studies and information available in public 
domain, lines were selected and crosses were made involving 
Jasmine 85, Tetep & MTU 9992 as resistant parents and 
TN1, Swarna Sub1, II32B, IR54 & IRBB4 as susceptible 
parents. The total of 1545 RILs from eleven bi-parental 
populations were used for the study to tap all the genomic 
regions governing sheath blight resistance dispersed across 
the genome. The RILs were generated by following 
single seed descent method (SSD) at Rapid Generation 
Advancement/ Speed breeding facility of Pioneer Hi-Bred 
Pvt. Ltd. Research Centre at Tunkikalsa village, Medak 
district, Telangana. The eleven crosses used for the study 
were, Jasmine 85×TN1, Jasmine 85×Swarna-Sub1, Jasmine 
85×II32B, Jasmine 85×IR54, Tetep×TN1, Tetep×Swarna-
Sub1, Tetep×II32B, Tetep×IR54, MTU 9992×TN1, 
MTU 9992×II32B and MTU 9992×IRBB4. All the RILs 
were phenotyped for sheath bight reaction in two hot 
spot locations (Seethanagaram and Draksharam) of East 
Godavari District of Andhra Pradesh state, India (Latitude 
16008’ N and Longitude 81008’ E, Latitude 17010’N and 
Longitude 81041’ E). 

The experiments consisting of F7 progenies along with 
parental lines were planted in Randomized complete design 
with two replications. Row length of 1.2 meter and spacing 
of 15×10 cm2 was considered to ensure dense population 
which is congenial for the development of disease. TN1 was 
used as susceptible check and was sown after every two rows 
as well as all along the border to increase the disease pressure 
as to serve as spreader rows. In the present study, the virulent 
local East Godavari isolate of rice sheath blight pathogen 
was utilized for disease screening. Before the inoculation, 
the fungus was cultivated in potato dextrose agar medium at 
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optimal temperature for 3–4 days, followed by transferring 
of disc of medium with mycelia for multiplication. To ensure 
stringent screening for better disease development, artificial 
inoculation was done by spraying the mycelia uniformly at 
the base of plant at maximum tillering stage. The data was 
recorded at peak milking stage to dough stage by visualizing 
the relative lesion length to height (%) using 1–9 scale based 
on development of lesion from the lower to upper part of 
plant on a scale from 1 (Resistant) to 9 (Susceptible) thereby 
getting total of six phenotypic categories, where score 1: 
1–20%, score 3: 21–30%, score 5: 31–45%, score 7: 46–65%, 
score 9: 66–100%.

2.2.  SNP genotyping

All the RILs used for the study were genotyped using 
Infinium marker platform which is a fixed plex comprising 
of 6564 markers, the genotyping was done at marker 
technology lab of Pioneer Hi-Bred International Limited 
at Johnston, Iowa State, United States of America.

2.3.  Statistical analysis (GS modeling)

Genomic selection follows a three-step process (Figure 
1). First, all the individuals which are part of training set 
are genotyped and phenotyped and effects are estimated 
for all molecular markers, GEBVs (predicted values) 
were calculated for all the individuals which are part of 
same training set using the marker effects generated and 
were correlated with phenotypic values to get prediction 
accuracy, this is referred as data fit analysis of the 
training set. Second, the training set is cross-validated by 
considering independent data set, different approaches of 
cross validation are used to understand predictive ability of 
training set. Third, members of untested populations are 
solely genotyped and then selected based on their predicted 
phenotypes (GEBVs) according to the marker effects 
estimated in the training set. For the current investigation 
rrBLUP, BayesA, BayesB, BayesCPi and GBLUP models 
were used for training the model and to generate marker 
effects to get GEBV’s of the breeding lines. The statistical 
analysis was done in “R” program with BGLR package with 

50,000 iterations.

2.4.  Tenfold cross validation analysis

To assess the accuracy of the model’s ability to predict the 
untested lines tenfold cross-validation (CV) simulations 
were done. The training set comprising of 1545 lines from 
eleven population with phenotypic and genotypic data was 
used to perform repeated tenfold cross validation. The 
training set was randomly divided into ten portions, the 
statistical model was trained on nine portions with 1390 
lines (training set), the remaining 155 lines (validation 
set) GEBVs were predicted using the marker effects of 
nine portions training set, these GEBV of 155 lines were 
correlated with phenotypic values to know the prediction 
accuracy. All these steps were repeated ten times to ensure 
that each portion was used at least once for prediction of 
GEBVs, finally the obtained accuracies across tenfold were 
averaged to understand the predictive ability of training set 
with all the models used for the study.

To evaluate the effect of marker density (MD) on the 
accuracy of prediction, various levels of marker density were 
considered (500, 800, 1100, 1400, 1700, 2000, 4000 and 
6000 markers). The ten-fold cross validation procedure was 
repeated for varying marker density datasets with GBLUP 
and Bayes B models.

3.   RESULTS AND DISCUSSION

The frequency distribution of 1545 F7 RILs evaluated 
showed continuous variation across all population 

studied (Figure 2). The genotypic analysis was done with 
large number of markers which were uniformly distributed 
throughout the genome (Table 1), polymorphic markers 
between parents across populations studied ranged from 
1407 to 2849, MTU 9992×TN1 and MTU 9992×IRBB4 
possessed lowest and highest number of informative markers 
(Table 2). The number of markers (marker density) and 
distribution of markers were found to have great impact on 
the prediction accuracy of training set, more the markers 

Figure 1: Showing the different steps of genomic selection 
(GS) used for crop improvement program
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Table 1: Summary of marker data used for analysis and SNPs 
distribution on each chromosome

Chromosome SNPs Length (cM)

Ch1 639 181.8

Ch2 846 162.84

Ch3 598 164.04

Ch4 594 129.6

Ch5 583 128.58

Ch6 577 124.4

Ch7 457 118.6

Ch8 495 121.2

Ch9 427 93

Ch10 324 84.01

Ch11 541 117.9

Ch12 483 109.5

Total 6564 1535.47

Table 2: The informative markers available across the genome 
for each population used for analysis
Populations No. of 

RILs
Total 

markers
Polymorphic 

Markers
Jasmine 85×TN1 121 6564 2522

Jasmine 85×Swarna-Sub1 139 6564 2627

Jasmine 85×II32B 144 6564 2586

Jasmine 85×IR54 161 6564 2663

Tetep×TN1 221 6564 2806

Tetep×Swarna-Sub1 158 6564 2278

Tetep×II32B 241 6564 2702

Tetep×IR54 94 6564 2796

MTU 9992×TN1 50 6564 1407

MTU 9992×II32B 122 6564 2314

MTU 9992×IRBB4 94 6564 2849

Total 1545

in LD with QTLs governing the trait, higher prediction 
accuracy was obtained.

The prediction accuracy (data fit) of training set across five 
models studied (rrBLUP, BayesA, BayesB, BayesCPi and 
GBLUP) ranged 0.63–0.72, lowest and highest prediction 
accuracies were observed with rrBLUP and GBLUP 
models respectively (Figure 3). BayesB and GBLUP models 
exhibited similar prediction accuracies with no significant 
difference between them. Greater data fit results of the 
training set in the current study could be attributed to 
larger size of the training set with bi-parental populations 

Figure 3: Prediction accuracy results (data fit) across 
populations for all the individuals which were part of training 
set for all five models studied

having good number of progenies in each population (Table 
2), higher marker density, high LD between markers and 
QTLs, robust statistical models used for calculation of 
marker effects (except rrBLUP), greater genetic relationship 
between populations which were part of training and 
validation set. The results were in conformation with the 
results obtained in earlier studies on effect of marker density, 
size of training set etc. (Heffner et al., 2011a; Heffner et 
al., 2009; Desta and Ortiz, 2014).

The tenfold cross validation prediction accuracy of 
rrBLUP results ranged 0.51–0.65, BayesA results ranged 
0.46–0.69, BayesB results ranged 0.58–0.64, BayesCPi 
results ranged 0.54–0.68 and GBLUP results ranged 
0.67–0.76 (Figure 4 and Table 3). The consistency of the 
prediction accuracy was better with BayesB and GBLUP 
across tenfold analysis but GBLUP stood out in comparison 
with rest of the models, it could be mainly because of 
great genetic relationship between training and validation 
set, GBLUP uses genetic relationship coefficients instead 
of marker effects for calculation of GEBVs of the lines. 
The average prediction accuracy across tenfold analysis 
ranged 0.60 (rrBLUP, BayesA, BayesB and BayesCPi) – 
0.72 (GBLUP). Based on average values of tenfold cross 
validation across models, GBLUP stands out with highest 
accuracy. When large number of markers data was used 
with good genetic relationship between training and test 
set, BayesB and GBLUP models appears to be robust in 
comparison with rrBLUP, BayesA, BayesCPi, but one 
of the challenges could be computational power that can 
be further improved by using advanced statistical models 
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(Heffner et al. 2011b). In summary, the results indicated 
that GBLUP and BayesB were more efficient models to 
predict sheath blight resistance.

with MD=6000. Prediction accuracy improved as the MD 
increased, a strong response to increase in marker density 
up to 2000 markers was observed with only a marginal 
increase in prediction accuracy when increased from 2000 
to 6000 markers. The results are summarized in Figure 5. 
The results in Table 4 clearly reveals that there was high 
range of prediction accuracy values across tenfold especially 
for lower MD datasets and accuracy was quite consistent 
with higher MD datasets.
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Figure 4: Box plot of tenfold cross validation analysis results 
of all five genomic selection models studied
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Table 3: Tenfold cross validation analysis results of all five genomic selection models studied

Tenfold rrBLUP BayesA BayesB BayesCPi GBLUP

1 0.596052 0.541081 0.581831 0.580503 0.704909

2 0.62977 0.667377 0.644163 0.545643 0.707266

3 0.511066 0.614166 0.593093 0.581049 0.723661

4 0.626937 0.569762 0.606939 0.623068 0.766029

5 0.656228 0.612357 0.598611 0.682747 0.703411

6 0.591816 0.626874 0.609494 0.543562 0.672195

7 0.57953 0.466312 0.604107 0.613744 0.754901

8 0.612378 0.697367 0.614845 0.616392 0.721327

9 0.613143 0.615836 0.632851 0.623488 0.761969

10 0.629728 0.647432 0.590061 0.624802 0.734774

Average 0.604665 0.605856 0.6076 0.6035 0.725044

3.1.  Effect of marker density (MD) on prediction accuracy 
estimation

The effect of marker density on prediction accuracy was 
assessed through random ten-fold cross validation with 
Bayes B and GBLUP models. The analysis was done 
keeping the training and validation set size constant (1390 
and 155 lines respectively). The average prediction accuracy 
with Bayes B model across ten-fold cross validation obtained 
was 0.336 with MD=500, 0.443 with MD=800, 0.471 with 
MD=1100, 0.535 with MD=1400, 0.625 with MD=1700, 
0.681 with MD=2000, 0.698 with MD=4000, and 0.708 
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Figure 5: Line graph depicting average prediction accuracies of 
different levels of marker densities studied with Bayes B model
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Whereas, the average prediction accuracy with GBLUP 
model across ten-fold cross validation obtained was 
0.432 with MD=500, 0.539 with MD=800, 0.562 with 
MD=1100, 0.632 with MD=1400, 0.722 with MD=1700, 
0.779 with MD=2000, 0.784 with MD=4000, and 0.793 
with MD=6000. Prediction accuracy enhanced as the MD 
improved, a strong response to increase in marker density 
up to 2000 markers was witnessed with only a negligible 
increase in prediction accuracy when increased from 2000 
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to 6000 markers, the trend of results was similar as that of 
Bayes B model but the prediction accuracy values were high 
revealing that GBLUP performance is better than Bayes B 
model. The results are summarized in Figure 6. The Table 
5 indicates that there was high range among prediction 
accuracy values across tenfold especially for lower MD 
datasets and consistency improved with higher MD datasets.

The results were consistent with studies using smaller 
data sets where additional markers benefited in enhancing 
prediction accuracy when larger training sets were used 
(Heffner et al., 2011a, b). The marker density at which 
plateau was reached in the current study was significantly 
higher than the plateau point of previous studies in smaller 
populations in wheat (Heffner et al., 2011b), as high marker 

Table 4: Detailed information on prediction accuracy across tenfold for different density of markers used for analysis with 
Bayes B model

Fold Marker density (number of markers)

500 800 1100 1400 1700 2000 4000 6000

1 0.385 0.454 0.493 0.495 0.582 0.693 0.683 0.713

2 0.313 0.452 0.475 0.495 0.577 0.698 0.694 0.707

3 0.396 0.412 0.462 0.517 0.645 0.695 0.663 0.713

4 0.245 0.425 0.495 0.563 0.682 0.662 0.708 0.685

5 0.389 0.473 0.478 0.567 0.672 0.672 0.713 0.713

6 0.282 0.428 0.495 0.495 0.649 0.698 0.698 0.706

7 0.256 0.426 0.428 0.487 0.545 0.648 0.658 0.726

8 0.358 0.421 0.435 0.576 0.675 0.697 0.691 0.684

9 0.373 0.471 0.493 0.587 0.647 0.671 0.706 0.719

10 0.368 0.468 0.455 0.572 0.585 0.674 0.692 0.713

Average Accuracy 0.336 0.443 0.471 0.535 0.625 0.681 0.698 0.708

Table 5: Detailed information on prediction accuracy across tenfold for different density of markers used for analysis with 
GBLUP model

Fold Marker density (number of markers)

500 800 1100 1400 1700 2000 4000 6000

1 0.495 0.554 0.583 0.605 0.702 0.803 0.783 0.803

2 0.402 0.532 0.565 0.575 0.667 0.788 0.774 0.797

3 0.506 0.532 0.552 0.637 0.755 0.815 0.773 0.803

4 0.325 0.505 0.575 0.643 0.762 0.742 0.788 0.765

5 0.519 0.603 0.608 0.697 0.802 0.802 0.843 0.813

6 0.342 0.488 0.545 0.565 0.699 0.768 0.758 0.806

7 0.354 0.524 0.526 0.585 0.643 0.746 0.756 0.804

8 0.434 0.498 0.513 0.651 0.749 0.775 0.762 0.762

9 0.478 0.579 0.598 0.69 0.752 0.772 0.811 0.774

10 0.472 0.575 0.557 0.674 0.69 0.779 0.794 0.811

Average Accuracy 0.43275 0.539 0.5622 0.6322 0.7221 0.779 0.7842 0.7938
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densities only facilitate finer resolution and more accurate 
estimates of QTL effects when combined with large 
population size and low linkage disequilibrium (Huang et 
al., 2012). This analysis showed that response to increased 
marker density is largest when using a diverse training set 
to predict between poorly related materials.

4.   CONCLUSION

From the data fit and tenfold cross validation results it 
is evident that GBLUP and Bayes B models provide 

high prediction accuracy compared to other statistical 
models investigated in the present study. The study of 
effect of marker density on accuracy indicated that 2000 
markers were enough for generating a relatively accurate 
prediction calibration for sheath blight. As the inheritance 
of sheath blight resistance is complex and also cost involved 
in genotyping has drastically reduced due to path breaking 
technologies in biotech industry, genomic selection can be 
promising strategy to tackle while breeding for sheath blight 
resistance in rice.
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