
© 2022 PP House

Stability Analysis for Assessment of Yield Performance and 
Adaptability of Selected Mango (Mangifera indica L.) Genotypes under 

Multi Location Trials in India
Sai Krishna K. , Ram Kumar Chaudhary and Mahesh Kumar

Print ISSN 0976-3988     Online ISSN 0976-4038 Article AR2870

DOI: HTTPS://DOI.ORG/10.23910/1.2022.2870
Research Art ic le

International Journal of Bio-resource and Stress Management

Dept. of Basic Sciences and Languages, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar (848 125), India

RECEIVED on 31st January 2022       RECEIVED in revised form on 08th May 2022      ACCEPTED in final form on 25th May 2022       PUBLISHED on 31st May 2022

Stress Management

I J B S M  M a y  2022, 13(5 ) :454-462

https://pphouse.org/ijbsm.php

Citation (VANCOUVER): Krishna et al., Stability Analysis for Assessment of Yield Performance and Adaptability of Selected Mango (Mangifera 
indica L.) Genotypes under Multi Location Trials in India. International Journal of Bio-resource and Stress Management, 2022; 13(5), 454-
462. HTTPS://DOI.ORG/10.23910/1.2022.2870. 

Copyright: © 2022 Krishna et al. This is an open access article that permits unrestricted use, distribution and reproduction in any medium 
after the author(s) and source are credited.

Data Availability Statement: Legal restrictions are imposed on the public sharing of raw data. However, authors have full right to transfer 
or share the data in raw form upon request subject to either meeting the conditions of the original consents and the original research 
study. Further, access of data needs to meet whether the user complies with the ethical and legal obligations as data controllers to allow 
for secondary use of the data outside of the original study.

Conflict of interests: The authors have declared that no conflict of interest exists.

A study was conducted in April 2020 based on the data collected from the All-India Coordinated Research Project on 
Sub-Tropical Fruits (AICRP-STF) and Central Institute for Subtropical Horticulture (CISH), Lucknow, India. The 

objective was to identify the high yielding and stable genotypes of mango using Additive main effects and multiplicative 
interaction (AMMI) and Genotype plus Genotype×Environment interaction (GGE) biplot analyses. Data on sixteen genotypes 
of mango tested across four locations, viz., Rewa, Sabour, Sangareddy, and Vengurla, over nine years was considered for the 
study. Combined analysis of variance showed highly significant differences (p<0.01) for genotype, environmental main effects 
and genotype×environment interaction (GEI) effects. The significant GEI contributes about 42.81% of the total sum of 
squares. AMMI analysis partitioned the GEI into fifteen interaction principal component axes and a residual term. The first 
two interaction principal component axes (IPCA1, IPCA2) collectively accounted for 40.80% of GEI sum of squares. AMMI 
analysis recommended Zardalu, Mankurad and GGE biplot analysis recommended Totapari, Mankurad as superior mango 
genotypes for cultivation in all the test locations. GGE biplot analysis classified the test locations into two mega environments. 
The first mega environment includes Rewa and Sangareddy with Neelum as the best suitable genotype; the second includes 
Vengurla and Sabour with Suvarnarekha as the best suitable genotype. The present study also concluded that GGE biplot 
analysis was the best analytical tool for identifying location-specific genotypes of mango, and AMMI analysis was the best for 
identifying superior genotypes having high yield with stability across all the test locations.
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1.   INTRODUCTION

Mango is one of the most important commercially 
grown fruit crops in India. Major mango producing 

countries in the world are India, China, Thailand, Indonesia, 
Mexico, Pakistan, Brazil, Philippines, Nigeria, and Sudan 
(Anonymous, 2020a).  Mango is cultivated in a vast area of 
2,578 t ha-1. The production is around 24.75 mt, accounting 
for about 45.13% of total world mango production 46.68% 
of world mango cultivated area (Anonymous, 2020a). 
The increasing population raises demand for agricultural 
produce, which is expected to enhance agricultural 
production. In a view of sustaining hunger, it is required to 
increase agricultural production per unit area. To encounter 
this requirement, various crop improvement programs 
have been initiated all over the world (Anonymous, 2019). 
In any crop improvement program, the performance of 
promising genotypes has been tested over different locations 
each year to identify the genotypes having both high yield 
qualities and wider adaptability over different environmental 
conditions (Kumar et al., 2021, Reddy et al., 2022). In Multi-
location trials (MLT), most frequently, it is noticed that the 
genotypes respond differently to the diverse environmental 
conditions; this differential response of genotypes over 
diverse environments is known as Genotype environment 
interaction (GEI) (Pham et al., 1988, Farias et al., 2016, 
Pagi et al., 2017). Yet there is no single method developed 
so far that equally satisfies breeders for the study of GEI. 
There are many different statistical analyses in use today, 
including parametric and non-parametric methods to study 
the nature of interactions of genotypes with environments 
(Kaya et al., 2006, Jeberson et al., 2017, Oladosu et al., 2017, 
Rao et al., 2022). 

Among various statistical techniques, Genotype plus 
Genotype×Environment Interaction (GGE) biplot and 
Additive Main Effects and Multiplicative Interaction 
(AMMI) models are being used predominantly for evaluating 
GEI and identifying superior genotypes (Purchase et al., 
2000, Gauch Jr., 2006, Oliveira et al., 2010, Zali et al., 2012, 
Giridhar et al., 2016, Khan et al., 2021). AMMI model 
was introduced in 1988, and basically, the AMMI model is 
a combination of Analysis of Variance (ANOVA), which 
explains the main effects (Reddy et al., 2022), and Principal 
Component Analysis (PCA) which describes interaction 
effects (Gauch and Zobel, 1988, Singh et al., 2019). GGE 
biplot model concurrently depicts mean performance and 
stability and gives a comprehensive assessment of genotypes 
by creating a biplot. It can efficiently display the “which-
won-where” patterns of MLT data (Singh et al 2019, Siddi 
et al., 2022). An important characteristic of this GGE biplot 
is that it removes the environment main effect and retains 
and combines genotype main effect and GEI. Thus, the 
biplot generated from the MLT data contains only G and 

GEI (Kang, 2002, Kumar et al., 2021, Sharma et al., 2016). 
GGE biplot and AMMI analyses has been carried out in 
understanding GEI in many crop species including pigeon 
pea (Rao et al., 2022, Reddy et al., 2022, Kumar et al., 2021, 
Sharma et al., 2016); wheat (Verma et al., 2021, Singh et 
al., 2019, Jeberson et al., 2017); ground nut (Khan et al., 
2021); maize (Bozovic et al., 2020, Oliveira et al., 2010); 
rice (Chandra Mohan et al., 2021).

Genotype environment interaction is a major problem in 
selecting and recommending superior genotypes to cultivate 
crops. When dealing with perennial crops like Mango, 
Guava, etc., this problem gets intensified because choosing 
unstable cultivars puts the farmers in a risky income situation 
for many years. To avoid such circumstances and facilitate 
growth in farmers’ income by recommending superior 
genotypes, the present study has been taken up.

2.   MATERIALS AND METHODS

2.1.  Source and description of data

Mango multi location trials were conducted at four locations 
namely Rewa (Madhya Pradesh), Vengurla (Maharashtra), 
Sangareddy (Telangana), and Sabour (Bihar) over different 
years. These trials were carried out in a randomized 
complete block design with three replications in each 
location. The present investigation has been carried out 
in April, 2020 based on the data collected from the All-
India Co-Ordinated Research Project on Sub-Tropical 
Fruits (AICRP-STF) and Central Institute for Subtropical 
Horticulture (CISH), Lucknow, India. All the four locations 
contain common data for 16 genotypes of mango tested 
over nine years from 1997−2005 with three replications, 
and the same data were taken for the study. For the present 
investigation, the yield variable, i.e., the number of fruits 
per tree has been considered for the evaluation of MLT 
data of Mango. A combination of years and locations were 
considered as environments. As mango genotypes were 
grown in 4 different locations over nine different years, it 
gives 36 environments. Codes of selected mango genotypes, 
and environments used in the present study are shown in 
Table 1.

2.2.  AMMI analysis 

AMMI analysis is a mixture of additive and multiplicative 
effect analysis. At first, it calculates additive main effects by 
using ANOVA; briefly ANOVA partitions the total variance 
into 3 different components like deviations of genotypes, 
environments, and GEI from the grand mean. The second 
part, i.e., multiplicative part, divides the deviations of GEI 
into various IPCAs, these IPCA are tested for significance 
through ANOVA (Gauch Jr, 1992). Generally, AMMI 
uses PCA for analysing the multiplicative part of GEI. The 
AMMI model for T genotypes and S environments is given 
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Table 1: List of mango genotypes, test environments, and 
their codes

Genotype Code Envi-
ronment

Code Environ-
ment

Code

Banganpalli G1 Rewa 
1997

E1 Sangareddy 
1997

E19

Suvar-
narekha

G2 Rewa 
1998

E2 Sangareddy 
1998

E20

Neelum G3 Rewa 
1999

E3 Sangareddy 
1999

E21

Totapari G4 Rewa 
2000

E4 Sangareddy 
2000

E22

Fazli G5 Rewa 
2001

E5 Sangareddy 
2001

E23

Chousa G6 Rewa 
2002

E6 Sangareddy 
2002

E24

Mallika G7 Rewa 
2003

E7 Sangareddy 
2003

E25

Zardalu G8 Rewa 
2004

E8 Sangareddy 
2004

E26

Bombai G9 Rewa 
2005

E9 Sangareddy 
2005

E27

Bombay 
Green

G10 Sabour 
1997

E10 Ve n g u r l a 
1997

E28

Himsagar G11 Sabour 
1998

E11 Ve n g u r l a 
1998

E29

Kishan 
Bogh

G12 Sabour 
1999

E12 Ve n g u r l a 
1999

E30

Alphanso G13 Sabour 
2000

E13 Ve n g u r l a 
2000

E31

Kesar G14 Sabour 
2001

E14 Ve n g u r l a 
2001

E32

Mankurad G15 Sabour 
2002

E15 Ve n g u r l a 
2002

E33

Vanraj G16 Sabour 
2003

E16 Ve n g u r l a 
2003

E34

Sabour 
2004

E17 Ve n g u r l a 
2004

E35

Sabour 
2005

E18 Ve n g u r l a 
2005

E36

below,	

Yij= μ+gi+ej+∑
n'

(n=1)λnαin γjn+θij………. (1)

θij ~ N (0, σ 2); i = (1, 2, 3, 4……...T); j = (1,2, 3……. S), Yij 
= Average yield of ith genotype in jth environment; µ= Grand 
Man;  gi  = ith genotypic main effect; ej= jth environmental main 
effect; λn= Eigen value of nth IPCA; αin and γjn = ith genotype 

and jth environment PCA scores for the axis n; θij= Residual; 
n’= Number of PCA axes retained in the model.

2.3.  Stability parameters

2.3.1.  AMMI stability value (ASV) 

This measure utilizes only the first 2 IPCAs. The higher 
value of the ASV score indicates that the genotype is 
specially adapted to certain environments and lower the 
scores of ASV, the more will be the genotypic stability across 
different environments (Purchase et al., 2000). It can be 
calculated by the following formula.

ASV=√[(IPCA1 score) (IPCA1sum of squares)/(IPCA2sum 
of squares)]2+[IPCA2 score]2 )………. (2)

2.3.2.  AMMI based stability measure (ASTABi)

ASTABi incorporates all the significant principal components 
required for explaining the GEI. Genotypes having a lower 
value of ASTABi are considered stable genotypes (Rao and 
Prabhakaran, 2005). This measure can be computed by the 
formula.

ASTABi=∑
N'

n=1λn  γ
2
in	 ……… (3)

= Number of significant IPCAs retained;  = Singular value 
of nth IPCA;  = ith genotype eigenvector value

2.3.3.  Yield stability index (YSI)

This measure combines mean yield and stability of a 
genotype in a single criterion. YSI can be computed by 
the addition of rank of stability measure (RS) and rank of 
mean yield (RY) of a genotype. The lower the value of YSI, 
the higher will be the mean yield and stability of genotype 
across environments.

YSI = RS + RY………………………. (4)

YSI1 = Index 1 = RASV + RY …………… (5)

YSI2 = Index 2 = RASTAB + RY …………. (6)

2.4.  GGE biplot analysis

The concept of biplot was introduced by Gabriel in 1971. 
The prefix ‘Bi’ in the word biplot denotes the dual (genotypes 
and environment) exposing on the same graph. Biplot is a 
2D visualization matrix that has two axes, first data was 
centered afterward sectionalizing the singular value (SV) 
into GE scores for individual principal components viz. 
PC1 and PC2 followed by intrigue the PC1 scores contrary 
to the PC2 scores to create a biplot (Gabriel, 1971). The 
greater PC1 value indicates greater yielding ability whereas 
the lower PC2 value signifies stability ( Jeberson et al., 
2017, Oladosu et al., 2017, Reddy et al., 2022). Genotypes, 
environments, and their interactions were portrayed on the 
biplot. The genotypes which were positioned near to the 
origin of the biplot origin are considered stable genotypes. 
However, the genotypes which are positioned far away from 
the origin of the biplot are considered unstable genotypes. 
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For better understanding and easy interpretation, various 
biplots have been derived from the basic GGE biplots. In 
the present study, 2 types of biplots namely: “Which-won-
where” view and “Ranking genotypes” view of the GGE 
biplot have been utilized. “Which-won-where” biplot has 
been used for identifying mega environments and this 
identification of mega environments helps in classifying 
similar behaving environments as one group and accordingly 
genotypes have been recommended for each of the mega 
environments. “Ranking genotypes” biplot has been used 
to identify superior genotypes. 

2.5.  Statistical analysis

To explain the GEI, the multivariate stability analysis was 
performed graphically based on GGE biplot (Which-won-
where view and ranking genotypes view) and AMMI using 
R studio (a simplified version of R statistical software) 
developed by the R Core Team. The Metan package 
of R studio was used for GGE biplots (Anonymous, 
2020b), while the Agricolae package was used for AMMI 
(Mendiburu, 2020).

2.6.  Data Transformation

To attain normality and homogeneity of error variances 
across environments, data was transformed using appropriate 
data transformation techniques. Yield variable data was 
transformed to normal using the “Ordered quantile 
normalization technique”. R-package “best Normalize” 
has been employed for data transformation (Peterson and 
Cavanaugh, 2019).

3.   RESULTS AND DISCUSSION

3.1.  AMMI analysis

One of the vital objectives of the crop improvement program 
is to identify superior varieties with high yield and stability 
across diverse locations. A combined analysis of variance has 
been performed to describe the main effects and quantify 
the interactions among and within the sources of variation. 
Due to the significant combined analysis of variance, yield 
stability of genotypes was studied, and genotypes with 
specific adaptability to each environment and genotypes 
with general adaptability to all environments were measured 
(Reddy et al., 2022).

The mean squares of genotypes, environments and their 
interactions (i.e., GEI) showed significant differences 
(p<0.01) for the yield variable. Genotypes, environments, 
and GEI effect accounted for 6.95%, 37.78%, and 42.81% 
of the total sum of squares, respectively. As ANOVA 
confirmed the presence of significant GEI, additional 
statistical techniques such as AMMI and GGE biplot 
analyses were more helpful in unfolding and understanding 
the GEI (Khan et al., 2021). Application of the AMMI 
model for the apportioning of GEI revealed 12 significant 

interaction principal component axes (IPCA). IPCA1 and 
IPCA2 collectively accounted for 40.80% of GEI. The 
combined analysis of variance and AMMI analysis results 
were presented in Table 2. Sabaghnia et al. (2008) also 
observed about 40% of GEI contribution in total variation 
in the lentil genotypes. Reddy et al. (2022) reported similar 
findings that stated that the GEI effect contributed 36.49% 
of the variation for Sterility mosaic disease. Chandra Mohan 
et al. (2021) observed a highly significant difference in 

Table 2:  AMMI analysis of variance over 36 environments

Source of variation df SS MSS F-value

ENVI 35 651.77 18.62 69.10**

REP(ENVI) 72 19.40 0.27 1.41**

GEN 15 120.03 8.00 41.90**

ENVI: GEN 525 727.72 1.39 7.26**

IPCA1 49 188.00 3.84 20.09**

IPCA2 47 108.65 2.31 12.10**

IPCA3 45 99.56 2.21 11.58**

IPCA4 43 88.67 2.06 10.80**

IPCA5 41 59.36 1.45 7.58**

IPCA6 39 47.30 1.21 6.35**

IPCA7 37 32.93 0.89 4.66**

IPCA8 35 31.80 0.91 4.76**

IPCA9 33 18.26 0.55 2.90**

IPCA10 31 16.61 0.54 2.81**

IPCA11 29 12.23 0.42 2.21**

IPCA12 27 10.69 0.40 2.07**

IPCA13 25 6.65 0.27 1.39NS

IPCA14 23 5.26 0.23 1.20NS

IPCA15 21 1.74 0.08 0.43NS

Residuals 1080 206.27 0.19

ENVI: environment; GEN: genotype; REP: replication; 
df: degrees of freedom, MSS mean sum of squares, TSS 
total sum of squares; **: Significant at p≤ 0.01, NS: Non 
significant at p≤ 0.05

grain yield in rice hybrids by genotype (7.5%), environment 
(65.47%) and their interaction (21.19%). Further, Giridhar 
et al. (2016), Kumar et al. (2020), and Rao et al. (2022) 
also reported highly significant genotype-environment 
interactions.

3.2.  Stability parameters of AMMI

Mango genotypes were ranked based on stability measures 
as well as simultaneous selection indices for yield and 
stability (SSIYS) using the interaction principal component 
axes (IPCA) scores obtained through AMMI analysis. 
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Values and ranks of the stability parameters are presented 
in Table 3 and Table 4, respectively. The genotype G4 
exhibited the highest mean yield, followed by G2, G8, and 
G15. Genotypes with lower scores of ASV and ASTABi 

Table 3: Mean yields and stability parameter estimates for 16 genotypes of mango tested in 36 environments

Genotypes Code Mean yield* ASV ASTABi Index 1 Index 2

Banganpalli G1 210.18 (-0.40) 1.55 4.00 29 30

Suvarnarekha G2 328.79 (0.43) 1.23 2.63 12 7

Neelum G3 280.53 (0.22) 2.22 4.23 21 21

Totapuri G4 311.90 (0.44) 1.11 3.10 9 12

Fazli G5 183.36 (-0.25) 1.50 2.32 25 15

Chousa G6 166.01 (-0.28) 1.41 2.84 26 23

Mallika G7 223.37 (0.04) 0.82 2.04 11 9

Zardalu G8 297.93 (0.34) 0.51 2.82 5 10

Bombay G9 187.13 (-0.10) 1.09 2.46 16 13

Bombay Green G10 172.74 (-0.27) 0.40 3.57 15 26

Himsagar G11 224.19 (0.05) 1.08 4.05 13 22

Kishan Bogh G12 169.19 (-0.23) 1.04 3.06 17 22

Alphanso G13 194.30 (-0.13) 2.03 2.81 24 16

Kesar G14 258.89 (0.15) 1.20 2.93 15 15

Mankurad G15 274.42 (0.22) 1.01 2.33 8 7

Vanraj G16 200.26 (-0.21) 2.07 3.66 26 24
*Numerical in the parenthesis are transformed value of yield variable

Table 4: Ranks of mango genotypes according to their mean yields and stability parameters

Genotypes Code Mean yield* ASV ASTABi Index 1 Index 2

Banganpalli G1 16 13 14 16 16

Suvarnarekha G2 2 10 5 5 1.5

Neelum G3 5 16 16 11 10

Totapuri G4 1 8 11 3 5

Fazli G5 13 12 2 13 7.5

Chousa G6 15 11 8 14.5 13

Mallika G7 8 3 1 4 3

Zardalu G8 3 2 7 1 4

Bombay G9 9 7 4 9 6

Bombay Green G10 14 1 12 7.5 15

Himsagar G11 7 6 15 6 11.5

Kishan Bogh G12 12 5 10 10 11.5

Alphanso G13 10 14 6 12 9

Kesar G14 6 9 9 7.5 7.5

Mankurad G15 4 4 3 2 1.5

Vanraj G16 11 15 13 14.5 14

are known as stable genotypes (Purchase et al., 2000, Rao 
and Prabhakaran, 2005). ASV scores were smaller for the 
genotypes G10, G8 and G7, while the ASTABi scores were 
minimum for the genotypes G7, G5 and G15; hence these 
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genotypes are known as stable genotypes according to ASV 
and ASTABi, respectively. G3 was recognized as an unstable 
genotype due to higher scores of ASV and ASTABi. The 
genotypes with the lowest and highest ranks of SSIYS are 
considered the best and the poorest genotypes, respectively. 
G8, G15 and G4 were identified as the best genotypes by 
Index 1, while G2, G15 and G7 were identified as the best 
genotypes by Index 2. However, the SSIYS (Index 1, Index 
2) found G1 as the poorest genotype.

Correlations among the stability measures and SSIYS have 
been computed and presented in Table 5. Correlations were 
quantified using Spearman’s rank correlation coefficient, 
and these correlations were tested for significance using a 
student t-test at a 1% level of significance (Zali et al., 2012). 
Index 1 and Index 2 have a significant correlation with 
each other and with mean yield, while ASV and ASTABi 
have no significant correlation with mean yield. Index 1 
has a significant correlation with ASV; however, Index 2 
has a significant correlation with ASTABi. For the present 
study, only SSIYS such as Index1 and Index 2 were 
chosen to identify superior genotypes among the stability 
parameters because of their ability to identify the genotypes 
simultaneously for yield and stability. In contrast, ASV 
and ASTABi rank the genotypes only based on stability, 
irrespective of their yields. Spearman’s rank correlation 
coefficient between SSIYS (Index 1 and Index 2) is highly 
significant (p<0.01), which implies either of the indices may 
invariably be used for identifying the best genotypes. The 
present study’s findings agreed with the report stated by Zali 
et al. (2012) considered thirteen different stability measures, 
and Verma et al. (2021) considered different AMMI based 
stability measures and simultaneous selection index in 
stability assessment of wheat genotypes. Final ranking order 
of mango genotypes based on AMMI analysis (Index 1) is 
G8 > G15 > G4 > G7 > G2 > G11 > G14 > G10.

GGE biplot for the yield variable. Each sector of the biplot 
forms a unique mega environment. The environments falling 
in the same sector belong to the same mega environment. 
The genotypes which share the same sector with the test 
environments in a biplot are specially adopted to those 
environments (Kang, 2002, Siddi et al., 2022).

Three mega environments have been identified as 
environmental indicators positioned in 3 sections of the 
biplot, with different genotypes winning in each segment. 
A single test environment, E14, formed the first mega 
environment with G16 and G13 as winners, and the test 
environments E9, E10, E11, E12, E13, E15, E16, E17, E18, 
E24, E25, E28, E29, E30, E31, E32, E33, E34, E35 and 
E36 collectively formed as the second mega environment 
with G2 as winner genotype. While remaining test 
environments, i.e., E1, E2, E3, E4, E5, E6, E7, E8, E19, 
E20, E21, E22, E23, E26 and E27 constitute the third mega 
environment with G3 as the winner genotype. The present 
study’s findings agreed with the report stated by Oladosu 
et al., 2017, who considered two different cropping seasons 
across five locations in Malaysia. Comparably, Mary et al. 
(2019) reported that the biplot for grain yield during the 
wet season showed that PSBRc82 was the winner genotype 
in E4 and MS13 in E8 and E9. Rukmini Devi et al. (2020) 
reported the rice genotypes WGRH-6 and WGRH-10 
had better performance in mega environment E3, and the 
genotype WGRH-18 exhibited better performance in the 
second mega environment consisting of E1 and E2. Similar 
results have been reported by Yan et al. (2010).

Table 5: Spearman’s correlation coefficients among different 
stability parameters

Mean 
yield

ASV ASTABi Index 
1

Index 2

Mean yield 1

ASV 0.19NS 1

ASTABi 0.12NS 0.30NS 1

Index 1 0.80** 0.73** 0.31NS 1

Index 2 0.78** 0.32NS 0.71** 0.75** 1

**: Significant at p≤ 0.01; NS: Non significant

3.3. GGE biplot analysis

3.3.1. “Which-won-where” view of GGE biplot

Figure 1 illustrates the “Which-won-where” view of the 

Figure 1: “Which–won–where” view of the GGE biplot 
for 16 genotypes of mango tested over 36 environments

Krishna et al., 2022
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3.3.2.  Ranking genotypes view of GGE biplot

This kind of GGE biplot describes the ranks of genotypes 
based on their position from the ideal genotype. For an 
effective selection, an ideal genotype should have both 
high mean and stability properties (Khan et al.,  2021). 
The genotype located in the innermost concentric circle 
is highly desirable compared to the genotypes of the outer 
circle. However, no genotype was positioned within the 
inner circle in some cases. Consequently, genotypes closer to 
the inner circle are considered the best ones (Gauch, 2006, 
Siddi et al., 2022). The genotypes G4, G15, G2, G8, G11, 
G14, and G7, were regarded as the best genotypes across 
all test environments because of their closeness to the ideal 
genotype (Figure 2). So, the genotype ranking based on ideal 
genotype for yield variable is G4 > G15 > G2 > G8 = G11 > 
G14>G7. Oladosu et al. (2017) and Chandra Mohan et al., 
2021 reported similar findings across mutant rice varieties.
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