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The current experiments were carried out in alpha lattice design at the Seed Breeding Farm, Department of Plant Breeding and 
Genetics, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur, Madhya Pradesh state, India, during 2019−20 and 2020−21 

crop seasons, using 236 RILs population. The aim of current experiment is to assessment of genetic diversity and identification 
of promising recombinant inbred lines for irrigated and restricted irrigated conditions through PCA and cluster analysis. The 
drought selection indices viz. Relative drought index, yield stability index, drought resistance index, mean productivity, stress 
tolerance index and yield index were performed from two year grain yield pooled data. The principal component analysis and 
cluster analysis were performed through drought selection indices. Drought selection indices viz. relative drought index, yield 
stability index, yield index were confirm strong positively associated with grain yield under restricted irrigated conditions while 
mean productivity, stress tolerance index and yield index were strong positively associated with grain yield under irrigated 
conditions. Moreover, high cluster mean, for grain yield under restricted irrigated condition with associated selection indices 
was confirmed by 77 inbred lines from cluster I. similarly 128 superior inbred lines were found for irrigated condition. The 
highest inter cluster distance was observed between cluster I and cluster III therefore the inbred line occupy by cluster I and 
cluster III were considered as most diverse lines and could be used in farther breeding program to achieve more recombination 
for drought tolerance.  
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1.   INTRODUCTION 

Wheat is the second most imperative cereal crop in 
the globe, followed by rice. For 8000 years, wheat 

has been the major food of most societies (Goyal et al., 
2020; Maulana et al., 2018; Garcia et al., 2019). Wheat is 
a staple source of carbohydrates and nutrients for around 
40% of the world’s population providing 20% of the daily 
protein and food calories (Lawati et al., 2021). The national 
wheat cultivation area is expanded 31.76 million hectares, 
production 109.52 million tons and average productivity 
of 3,464 kg ha-1 (Anonymous, 2020). It is very delicate 
to biotic and abiotic stress, therefore, resulting in low 
productivity under the picture of climate change (Ali et 
al., 2021). Moreover, the current global warming spectacle 
is giving rise to an annoying climatic instability that 
badly affects ecosystem worth, plant growth, and farming 
production (Schauberger et al., 2017; Hassan et al., 2020). 
The term ‘water deficit’ is the preferred term to denote 
the lack of irrigation or the experiments which related to 
the simulation of the drought (Frih et al., 2021). Drought 
tolerance is not habitually discussed as a sovereign character 
by plant breeders because tolerance appliances can be 
reliably general and polygenic in nature (Zhao and Dai, 
2015; Abou-Elwafa, 2016). Global warming and the driving 
factors of climate change propose that additional frequent, 
extensive and severe droughts are predictable in the 21st 
century through many areas of the world (Schwalm et al., 
2017; Raza et al., 2019). Drought harshness will constrain 
wheat cultivation due to the absence of drought-tolerant 
varieties since the recent wheat varieties are not adequately 
tolerant against abiotic stresses (Hussain et al., 2016). Due 
to the unavailability of available moisture to the plants, the 
selection of potential genetic lines is an important step in 
wheat breeding (Tanaka et al., 2015). The selection indices 
viz., stress tolerance index (STI), relative drought index 
(RDI), mean productivity (MP) and yield stability index 
(YSI) help tremendously to select the potential moisture 
stress-tolerant lines (Yadav and Bhatnagar, 2001). There 
is a great scope to increase wheat production in restricted 
irrigated conditions by breeding more efficient plant types 
adaptable to variable environmental conditions. At present, 
breeding of wheat for such specific situations including 
identification of potential genotypes and related attributes 
on variability, keeps immense value. The estimation of 
genetic parameters that help to decide breeding strategies 
may vary with environmental conditions and the setup of 
experimental genotypes. Grain yield is a complex trait that 
depends on its various component traits (Khairnar et al., 
2018). To improve the genetic contents of any crop genetic 
diversity is a prerequisite for the crop improvement program 
(Mathew et al., 2019). The cluster analysis was performed 
using a measure of similarity levels and Euclidean distance 

(Sant’Anna et al., 2020; Giraldo et al., 2019). In addition, 
assessment of genetic distance is one of most suitable 
tools for selection of parents in a wheat crossing scheme 
for possible yield enhancement (Negisho et al., 2021). 
However, multivariate analysis practices can be used to 
discover relationships, grouping and parameter expectation 
within composite data collections as the deductions are more 
accurate and meaningful (Bohm et al., 2013; Ahmadizadeh 
et al., 2019). Principal component analysis provides reliable 
assessment of complex relationships among various traits 
(Ahmad et al., 2017; Fayaz et al., 2019). An assessment of 
the nature and magnitude of diversity between lines will 
help to choose better parents for hybridization. Intercrossing 
among genetically differing inbred is predictable to produce 
superior hybrids and appropriate recombinants.

2.   MATERIALS AND METHODS 

The present experiment was carried out at the Seed 
Breeding Farm, Department of Plant Breeding and 

Genetics, Jawaharlal Nehru Krishi Vishwa Vidyalaya, 
Jabalpur, Madhya Pradesh state, India situated at 21°45’N 
latitude, 80°50’ E longitude and 301.5 m altitude from mean 
sea level, in rabi season (November–March, 2019−20 and 
2020−21). The experimental material was consisting of 
236 recombinant inbred lines. The selection program was 
initiated by Screening, F7 and F8 generations in irrigated 
and restricted irrigated conditions. The experimental 
material was planted in Alpha Lattice design along with 
2 replications. Three rows of each line were planted 
however, five plants were randomly selected to estimate 
grain yield per plant in grams. Recommended fertilizer 
doses were applied as basal application. Under the irrigated 
conditions, five irrigations were provided whereas; under 
restricted irrigation, only two irrigations were provided at 
the crown root initiation stage and flowering stage. The 
weeds were controlled manually in irrigated and restricted-
irrigated conditions during both years. The mean grain 
yield data of 2020–21 and 2021–22 from irrigated and 
restricted irrigated conditions were computed to estimate 
the following drought selection indices:  relative drought 
index (RDI), mean productivity (MP), yield stability index 
(YSI), stress tolerance index (STI), yield index (YI) and 
drought resistance index (DI). The cluster and principal 
component analysis were performed using by CRAN R 
package (Table 1).

3.   RESULTS AND DISCUSSION 

Climate change is triggering more recurrent and intense 
periods of drought as overall precipitation levels 

decay. Dry parts cover more than 41 percent of the world’s 
terrestrial surface and are household to 2.4 billion populaces; 
one-third of the worldwide population. Drought is presently 
one of the chief constraints that avoid crop plants from 
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conveying their full genetic potential. The documentation of 
drought tolerance lines is critical to safe productivity. In the 
present study, 236 recombinant inbred lines derived from a 
cross among two spring wheat genotypes with discrepancy 
features for drought response were evaluated. The objective 
of current study is to assessment of genetic diversity and 
identification of promising recombinant inbred lines for 
irrigated and restricted irrigated conditions through PCA 
and cluster analysis (Figure 1). 

3.1.  Principle component analysis 

Principal component analysis (PCA) is a multivariate 
statistical analysis intended for exploratory, simplifying 
complex and huge data sets. Based on the association among 
the selection indices and extracted component, the outline 
of variation among recombinant inbred lines were also 
studied using principal component analysis (PCA) to assess 
the diversity of the lines and their relationship with the 
estimated selection indices. The drought selection indices 
were estimated from two-year pooled data and subjected to 

compute PCA analysis. Total 8 principal components (PCs) 
were obtained, but only two PCs that exhibited eigenvalues > 
1.0 were measured as significant. The values of the first two 
PCs elucidated all the characters influencing about 99.0% 
of the cumulative variability for all the selection indices. 
Ahmad et al. (2017) also recorded maximum variability 
in the first two principal components with respect to 
succeeding components which is in line with our findings.

PC1 accounted for about 58.6% and PC2 for 41.0% 
variation of selection indices (Table 2). The variable, which 

Table 1: Estimated drought selection indices

Relative drought 
index (RDI)

( YD/YN)/(γ
D/γN) 

Fischer and Maurer 
(1978)   

Mean productivity 
(MP)

(YN+YD)/2 Rosielle and 
Hamblin (1981)   

Yield stability index 
(YSI)

(YD/YN) Bouslama and 
Schapaugh (1984)

Stress tolerance 
index (STI)

(YD*YN)/γN Fernandez (1992)

Yield index (YI) (YD/γD) Gavuzzi et al. (1997)

Drought resistance 
index (DI)

Y D * ( Y D /
YN)/γD

Lan (1998)

Figure 1: Frequency distribution of drought section indices
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Table 2: Eigen values and latent vectors of selection indices 
associated with the first two principal components from 
pooled data

Variable Principal component

PC 1 PC 2

Eigenvalue 4.6 3.2

Variance (%) 58.6 41.0

Cumulative variance (%) 58.6 99.6

Selection indices Latent vectors

Relative drought index (RDI) 0.33 -0.38

Mean productivity (MP) 0.25 0.45

Yield stability index (YSI) 0.33 -0.38

Stress tolerance index (STI) 0.32 0.39

Yield index (YI) 0.45 0.06

Drought resistance index (DI) 0.42 -0.19

Grain yield under irrigated condition 
(YN)

0.05 0.54

Grain yield under moisture stress 
condition (YD)

0.45 0.06
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contributed maximum positive value to PC1 was yield 
under restricted irrigated condition (0.45) and yield under 
irrigated condition (0.45), followed by drought resistance 
index (0.42), relative drought index and Yield stability 
index (0.33), stress tolerance index (0.32) mean productivity 
(0.25) and grain yield under irrigated condition (0.05) while 
in PC2 the maximum contributing variables were grain 
yield under irrigated condition (0.54), followed by mean 
productivity (0.45), stress tolerance index (0.39) yield index 
and grain yield under restricted irrigated condition (0.06) 
(Table 2).
For screening drought-tolerant cultivars/lines of wheat, 
PCA bi-plot (Figure 2) analysis has been used widely and 
effectively by other researchers (Ahmed et al., 2019; Ahmad 
et al., 2017). The degree and direction of associations 
among selection indices are given by the cosines of the angle 
between their vectors. Hence, r=cos 180º= -1, cos 0º=1 and 
cos 90º=0 (Rajcan, 2002). From selection indices over the 
years the entire selection indices viz. relative drought index 
(RDI), yield stability index (YSI), drought resistance index 
(DI), mean productivity (MP), stress tolerance index (STI) 
and yield index (YI) were positively associated (figure 2) 
with grain yield under restricted conditions (YD). On the 
other hand grain yield under irrigated conditions (YN) was 
positively correlated with mean productivity (MP), stress 
tolerance index (STI) and yield index (YI). The selection 
indices relative drought index (RDI), yield stability index 
(YSI) and yield index (YI) were strongly associated (figure 
2) with yield under restricted irrigation (YD). Similar 
correlation were found by many researchers (Dorostkar 
et al., 2015; Golabadi et al., 2006). Indices that showed 
highly significant correlations with grain yield under stress 
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Figure 2: Clustering and relationship among drought selection 
indices
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and non-stress environments are generally suitable for 
selecting stress tolerant genotypes (kumar et al., 2020).The 
association of the selection indices with grain yield also has 
imperative implications in formulating and utilizing it as an 
indirect selection criterion (Singh et al., 2018).

3.2.  Hierarchical clustering

Clustering is a method where millions of data points are 
gathered together to customize in a cluster. Cluster analysis 
or clustering is to group, categorize or classify a set of objects 
into many subsets, called clusters, in such a way that the 
items inside one subset are more “similar” to each other, 
while “dissimilar” to items inside other subsets (Kanavi et 
al., 2020). The cluster analysis was performed from two year 
pooled data of drought selection indices and was presented 
in Table 4. Cluster analysis would definitely help plant 
breeders to identify genetically diverse parents falling in 
different clusters (Rufo et al., 2019). Three optimum clusters 
were obtained using silhouette methods. Hence, based on 
similarity index 77, 128 and 31 lines were identified by 
1st, 2nd and 3rd cluster respectively (Table 3). The average 
minimum intra cluster distance was observed for cluster 
I (2.62) while average inter-cluster distance was practical 
for clusters I and III (5.16), followed by clusters II and III 
(4.61). Similar findings are also reported by (Kanavi et al., 
2020). The benefit of this tactic is that it can be cast off 
to calculate distances among lines. The distance between 
the 2 higher clusters may be subjected to further breeding 
programs for identifying the superior segregates for moisture 
stress conditions and grain yield.

Table 3: Cluster membership summary

Cluster I 1,7,8,24,33,35,37,41,45,46,47,48,49,54,56,59,60
,82,85,93,97,98,100,106,113,114,116,117,118,1
19,120,121,122,124,125,127,130,132,134,136,1
39,140,141,143,144,145,147,148,151,153,154,1
57,159,161,171,179,182,187,189,190,197,199,2
00,202,209,210,213,214,216,217,220,221,223,2
29,231,235,236

Cluster 
II

2,3,4,6,9,10,11,12,13,14,17,18,19,20,21,25,26,2
7,29,30,31,32,34,36,38,40,42,43,44,50,51,53,55
,58,61,62,63,64,65,66,67,68,70,72,73,74,75,76,7
7,78,79,81,84,86,88,89,90,91,92,94,95,96,99,10
3,104,105,107,108,109,111,112,123,126,128,13
3,135,137,142,146,149,150,155,156,158,160,16
3,164,166,167,168,169,173,175,176,177,178,18
0,183,184,185,188,191,192,193,194,195,196,19
8,201,203,205,206,207,208,211,212,215,218,21
9,222,224,225,226,227,228,230,233,234

Cluster 
III

5,15,16,22,23,28,39,52,57,69,71,80,83,87,101,1
02,110,115,129,131,138,152,162,165,170,172,1
74,181,186,204,232
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Table 4: Average intra and inter cluster distance of drought 
selection indices

 Clusters I II III

I 2.62 3.86 5.16

II 0 4.61

III 0

The average values of the selection indices for each cluster 
were assessed and are presented in table 5. Cluster I was 
characteristics features for grain yield under restricted 
irrigated condition (YD) followed by relative drought index 
(RDI), yield stability index (YSI) and yield index (YI), these 
were also confirm high positive correlation with grain yield 
under restricted irrigated condition (YD) through PCA 
bi-plot analysis (figure 2). Cluster II was characteristics 
features for grain yield under irrigated condition followed 
by mean productivity (MP) and stress tolerance index (STI), 
these were also confirmed positively correlation with grain 
yield under irrigated condition (YN) through PCA bi-plot 
analysis (figure 2). Cluster III was comparatively observed 
low value for all selection indices while high inter cluster 
distance was observed with cluster I therefore, intercrossing 
of recombinant inbred lines involved in these clusters 
could be practiced for inducing variability in the respective 
characters and their rationale improvement for increasing 
grain yield for drought conditions. 

genotype by environment interaction observed showed 
that each genotype responded differently in two years in 
respect to their grain yield (Sharma et al., 2010). Among 
these techniques, the most frequent and successful are the 
morphological and quantitative parameters, which are 
commonly used for the estimation of genetic variation in 
most breeding programs (Phougat et al., 2017).

4.   CONCLUSION

Drought selection indices viz. relative drought index 
(RDI), yield stability index (YSI), yield index (YI) 

were confirm strong positively associated with grain yield 
under restricted irrigated conditions (YD) while mean 
productivity (MP), stress tolerance index (STI) and yield 
index (YI) were strong positively associated with grain 
yield under irrigated conditions (YN) and same confirmed 
by cluster mean for cluster I and cluster II respectively 
therefore cluster I occupy 77 restricted irrigation tolerant 
line and cluster II occupy 128 high yielding recombinant 
lines for irrigated condition. 
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