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A study was undertaken during the 2017–18 to 2018–19 cropping seasons at at eleven locations and/or seventeen 
environments in optimum moisture areas of Ethiopian to identify stable genotypes with high grain yield and release as a 

variety for optimum-moisture environments. Alpha-lattice design with three replications was used. The combined ANOVA 
revealed very highly significant differences (p≤0.001) among genotypes, environments, and GEI for yield and its components. 
The environment sum of squares contributed more than the genotype and GEI sum of squares for the total variance of all 
traits. When we consider the overall mean for grain yield, genotype ETBW8751 (5.12 t ha-1) the highest value followed by 
ETBW9554 (5.10 t ha-1) whereas the lowest grain yield was obtained from the genotype ETBW8804 (3.67 t ha-1). GGE and 
AMMI analysis explained almost similar amounts of variation; however, AMMI still show a slightly greater proportion than 
GGE during our study. According to AMMI and GGE analysis genotype 21 (ETBW9553) was more stable as well as high 
yielding followed by 22 (ETBW9554) and 2 (ETBW8751. Conversely, 15 (ETBW9547) was unstable, but high yielding. 
Hidasse had low yields but was unstable. ETBW9554 was validated on farmers’ fields and recommended for registration as a 
commercial variety  and finally released in 2020 with its designated local name “Boru” for commercial production for mid to 
highland agro-ecologies in Ethiopia.
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1.   INTRODUCTION

Bread or common wheat (Triticum aestivum L.) is the 
most widley cultivated cereal crop which has primary 

significance for human nutrition worldwide (Abdelaal 
et al., 2018; Hossainet et al., 2018). The yield of bread 
wheat should be increased in parallel with the increasing 
population (Karaman, 2019). In Ethiopia wheat is produced 
on a total area of 1.87 mha of land with a total production 
of 5.8 mt with average productivity of 3.1 t ha-1 under rain 
fed (CSA, 2022, which is relatively lower than the attainable 
yield of the crop, reaching up to 5 t ha-1 (Zegeye et al., 2020). 
On the other hand, Ethiopian government is determined 
to fill the demand gap through production of wheat during 
off-season in existing environments by using irrigation and 
expansion of wheat production in nontraditional wheat 
growing areas specially in lowlands (Abebe et al., 2023; 
Tadesse et al., 2022).

Biotic stress susch as diseases, insect pests, weedd   soil 
fertility, erratic rainfall, sub-optimal use of agronomic 
practices, and increased costs of inputs are among  limiting 
factors of wheat production in the low to mid altitude 
areas of Ethiopia (Habte et al., 2014; Shiferaw et al., 2014; 
Brasesco et al., 2019;  Hodson et al., 2020; Adugnaw and 
Dagninet, 2020). Therefore, breeding for grain yield, disease 
resistance  and wide adaptability has become priority of 
the national wheat improvement program in the country 
(Alemu et al., 2019; Gadisa et al., 2022). Bread wheat is the 
most widely adapted compared to other cultivated species 
and this situation favoured the crop to be one of the most 
cultivated  food crops worldwide  (Rajaram, 2005). 

Grain yield is one of the traits of importance and breeders 
often seek to identify genotypes with high and stable yield 
across environments (Forgone, 2009). Wheat genotypes 
should be tested in multi-environment yield trials to 
determine grain yield, stability, GEI, adaptability, and to 
identify a potential candidate to release for commercial 
cultivation (Kaya et al., 2006). Stable and high yielding 
varieties under different environmental  conditions would 
be the most important step in any breeding program before 
release as a variety (Gadisa et al., 2020). Determining 
the stability of genotypes helps in identifying potential 
genotypes to be released with broad and specific adaptability 
(Aktas, 2016 ; Husnu, 2016; Sajid and Mohammed, 2018). 

For the development of stable varieties, there must be a 
presence of large genetic diversity in the populations under 
study (Gupta, et al., 2022). From these populations, one can 
identify genotypes showing wide stability under different 
environmental conditions (Gupta et al., 2022). This is 
performed by understanding the interaction of genotype 
with the environment (Regmi et al., 2021). Genotype by 
Environment Interaction (GEI) is a phenomenon related to 
the inconsistent performance under diverse environmental 
conditions, and it plays an important role in the performance 
of genotypes under different environments (Bhartiya et al., 
2018). G×E interaction reduces the efficiency of selection 
and accuracy of varietal recommendation. Due to this 
interaction of the genotype by environment, it is necessary 
to study the genotype in the environment interaction before 
introducing new high-yielding genotypes with high stability 
in different environments (Gupta et al., 2022).

Improving the adaptability of crop varieties to a changing 
environment supported by appropriate crop management 
strategies is the working principle worldwide in ensuring 
crop productivity (Blum, 2011; Farooq et al., 2015; 
Stroosnijder et al., 2012; Wasson et al., 2012). The objective 
of this study was to identify stable genotypes with high 
grain yield and release as avariety for optimum moisture 
environments.

2.   MATERIALS AND METHODS

2.1.  Planting materials and test locations

Twentyeight advanced bread wheat genotypes were evaluated 
against two checks (‘Wane’ and Hidase’) at eleven locations 
and/or seventeen environments in optimum moisture areas 
of Ethiopian in 2017–18 and 2018–19 cropping seasons. 
Sowing and harvesting of tested materials were carried out 
from first week of June to mid-July and from last week of 
October to last week of November, respectively. Description 
of eleven test locations and advanced bread wheat genotypes 
were presented in Tables 1 and 2 and figure 1, respectively.

2.2.  Experimental layout

An alpha lattice design with three replications was used. 
Every plot had six rows of 2.5 m by 1.2 m (3m2) long with 
0.2 m inter-row spacing. The seeding rate was 150 kg ha-1 
while fertilizer and other agronomic practices were applied 
according the recommendation of each location. 

Alemu et al., 2023

Table 1: List of test locations and their description

Code 1 2 3 4 5 6 7 8 9 10 11

Location Kulumsa Arsi 
Robe

Asasa Bekoji Areka Shambu Debra 
Zeit

Holeta Adet Enawari Aweli 
Gera

Altitude 2200 2420 2340 2780 2230 2503 1900 2400 2216 2650 2490

Rainfall (mm) 820 890 644 1020 1290 - 851 1044 1250 878 -
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Table 2: List of bread wheat lines and varieties tested across locations

Code Name Pedigree

G1 Wane SOKOLL/EXCALIBUR

G2 ETBW 8751 SUP152//ND643/2*WBLL1

G3 ETBW 8858 SWSR22T.B./2*BLOUK #1//WBLL1*2/KURUKU

G4 ETBW 8870 WAXWING*2/TUKURU//KISKADEE #1/3/FRNCLN

G5 ETBW 8802 CHAM-4/SHUHA'S'/6/2*SAKER/5/RBS/ANZA/3/KVZ/HYS//YMH/TOB/4/BOW'S"

G6 ETBW 8991 SUP152//ND643/2*WBLL1

G7 ETBW 8862 C80.1/3*BATAVIA//2*WBLL1/3/C80.1/3*QT4522//2*PASTOR/4/WHEAR/SOKOLL

G8 ETBW 8804 TURACO/CHIL/6/SERI 82/5/ALD'S'/4/BB/GLL//CNO67/7C/3/KVZ/TI

G9 ETBW 8996 FALCIN/AE.SQUARROSA (312)/3/THB/CEP7780//SHA4/LIRA/4/FRET2/5/DANPHE
#1/11/CROC_1/ AE.SQUARROSA(213)//PGO/10/ATTILA*2/9/KT/BAGE//FN/U/3/BZA/
4/TRM/5/ALDAN/6/SERI/7/VEE#10/8/OPATA

G10 ETBW 8583 MINO/898.97/4/PFAU/SERI.1B//AMAD/3/KRONSTAD F2004

G11 ETBW 8668 BAVIS*2/3/ATTILA/BAV92//PASTOR

G12 ETBW 8595 BAVIS*2/3/ATTILA/BAV92//PASTOR

G13 ETBW 8684 PASTOR//HXL7573/2*BAU/3/WBLL1/4/1447/PASTOR//KRICHAUFF

G14 ETBW 9486 FRANCOLIN#1/3/PBW343*2/KUKUNA*2//YANAC/4/KINGBIRD#1//INQALAB 91*2/
TUKURU

G15 ETBW 9547 MUTUS*2/AKURI//MUTUS*2/TECUE #1

G16 ETBW 9548 REEDLING #1//KFA/2*KACHU

G17 ETBW 9549 KFA/2*KACHU/3/KINGBIRD #1//INQALAB 91*2/TUKURU/4/KFA/2*KACHU

G18 ETBW 9550 KFA/2*KACHU*2//WAXBI

G19 ETBW 9551 KFA/2*KACHU/4/KACHU #1//PI 610750/SASIA/3/KACHU/5/KFA/2*KACHU

G20 ETBW 9552 KACHU#1/4/CROC_1/AE.SQUARROSA 205)//BORL95/3/2*MILAN/5/KACHU/6/
KFA/2*KACHU

G21 ETBW 9553 MURGA/KRONSTAD F2004/3/KINGBIRD #1//INQALAB 91*2/TUKURU

G22 ETBW 9554 SAUAL/MUTUS/6/CNO79//PF70354/MUS/3/PASTOR/4/BAV92*2/5/FH6-1-7/7/CNO79
//PF70354/MUS/3/PASTOR/4/BAV92*2/5/FH6-1-7

G23 ETBW 9555 KFA/2*KACHU/5/WBLL1*2/4/BABAX/LR42//BABAX/3/BABAX/LR42//BABAX/6/
KFA/2*KACHU

G24 ETBW 9556 SOKOLL/3/PASTOR//HXL7573/2*BAU/4/PARUS/PASTOR

G25 ETBW 9557 SOKOLL/WBLL1/4/D67.2/PARANA 66.270//AE.SQUARROSA (320)/3/CUNNINGHAM

G26 ETBW 9558 BABAX/LR42//BABAX/3/ER2000/5/ATTILA/4/WEAVER/TSC//WEAVER/3/WEAVER/6/
KA/NAC//TRCH

G27 ETBW 9559 CHIBIA//PRLII/CM65531/3/MISR *2/4/HUW234+LR34/PRINIA//PBW343*2/KUKUNA/3/
ROLF07

G28 ETBW 9560 CHWINK/GRACKLE #1//FRNCLN

G29 ETBW 9561 TRAP#1/BOW/3/VEE/PJN//2*TUI/4/BAV92/RAYON/5/KACHU #1*2/6/KINGBIRD #1

G30 Hidasse YANAC/3/PRL/SARA//TSI/VEE#5/4/CROC-1/AE.SQUAROSA(224)//OPATTA

2.3.  Statistical analysis

Grain yield data  were subjected to analysis of variance 
(ANOVA) for each environment separately, and combined 
analysis of variance was conducted to determine the effect 

of environment (E), genotype (G), and GEI. The SAS 
software version 9.3 and R Software were used for combined 
ANOVA, AMMI, and GGE biplot.
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the principal component analysis (PCA) axis,  and  are the 
principal component scores for PCA axis n of the  genotype 
and  environment and  is the error term.

2.6.  GGE biplot analysis

The GGE biplot is a biplot that displays the GGE part of 
MET data. The basic model for a GGE biplot is:

Yij-μ-βj=λ1ξi1ηj1+λ2 ξi2ηj2+εij

where is the mean for the  genotype in the  environment,  
is the grand mean is the main effect of environment j,  
and are the singular values of the 1st and 2nd principal 
components (PC1 and PC2),  and are the PC1 and PC2 
scores, respectively, for genotype,  and  are the eigenvectors 
for the  environment for PC1 and PC2 and is the residual 
error term.

3.   RESULTS AND DISCUSSION

The combined ANOVA given in Table 3 shows that 
the environment, genotype and GEI were highly 

significant (p<0.001) for all traits across environments in 
terms of grain yield, days to heading, days to maturity, plant 
height, thousand kernel weight, and test weight across.

The total sum of squares was divided into components to 
estimate the magnitude of GEI. For all measured traits, the 
explained percentage sum of the square for environments 
took the largest portion, accounting for 76.05% for grain 
yield, 80.72% for days to heading, 93% for days to maturity, 
75.14% for plant height, 56.87% for thousand kernel weight 
and 81.58% for test weight (Table 4). An oversized sum of 
squares for environments indicated that the environment 

Table 3: Combined analysis of variance of grain yield and agronomic traits for 30 bread wheat advanced genotypes evaluated 
at 17 environments

Source of variation GYLD DTH DTM TKW PHT HLW

Df MS MS MS Df MS Df MS Df HLW

ENV 16 241.31*** 4774.3*** 20316.79*** 12 10393.1*** 11 8034.4*** 10 2917.63***

REP(ENV) 34 3.900*** 398*** 99.2*** 26 15.2*** 24 71.3*** 22 44.59***

GEN 29 6.57*** 311.94*** 252.2*** 29 212.2*** 29 620.5*** 29 76.43***

ENV:GEN 464 2.21*** 19.83*** 36.97*** 348 29.3*** 319 41.3*** 289 46.53***

PC1 44 6.96*** 70.59*** 267.70*** 37 102.94*** 39 111.54*** 38 258.83***

PC2 42 4.56*** 36.13*** 95.55*** 35 63.13*** 37 59.58*** 36 32.81***

PC3 40 3.46*** 25.83*** 45.18*** 33 26.19*** 35 46.17*** 34 13.8ns

PC4 38 2.63*** 23.07*** 40.75*** 31 20.99*** 33 40.00*** 32 13.22ns

Residuals 986 1.07 12.1 15.6 747 6.8 695 25.7 613 15.58

CV% 22.37 5.16 3.14 7.27 5.62 5.42

Mean 4.62 67.36 125.9 35.89 90.27 72.78

Where; ***: Very highly significant difference at p<0.001; GYLD: Grain yield; DTH: Days to heading;  DTM: Days to 
maturity; PHT: Plant height; TKW: Thousand kernel weight; HLW: Hectoliter weight

 

 

 

 

Figure 1 Location map of study area 
Figure 1: Location map of the study area

2.4.  Stability analysis

The stability analysis was conducted among genotypes over 
environments using AMMI and GGE biplot multivariate 
analysis methods as described below:

2.5.   AMMI analysis

The AMMI analysis was performed using the model 
suggested by Crossa et al. (1990):

Yij=μ+Gi+Ej+∑
n

n=1λnαinyjn+eijk

Where  is the yield of the  genotype in the  environment, 
μ is the grand mean, is the mean of the  genotype minus 
the grand mean,  is the mean of the  environment minus 
the grand mean,  is the square root of the Eigenvalue of 

Alemu et al., 2023
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Table 4: The contributions of the source of variation for 
tested characters

Source of 
variations

Contributions

GYLD DTH DTM PHT TKW HLW

Environ-
ments

76.05 80.72 93 75.14 56.87 81.58

Geno-
type

3.75 9.56 2.09 15.26 17.19 3.40

Interac-
tions

20.2 9.72 4.91 9.59 25.94 15.02

Where; GYLD: Grain yield, DTH: Days to heading, DTM: 
Days to maturity, PHT: plant height, TKW: Thousand kernel 
weight, and HLW: Hectoliter weight

was diverse, with large variations among environmental 
means causing most of the variation in grain yield and yield 
components of the bread wheat genotypes and contributing 
in large to the GEI. Similar findings have been reported on 
different crops including wheat by several authors (Kaya et 
al., 2002; Asrat et al., 2009; Farshadfar and Sadeghi, 2014; 
Yasin et al., 2014; Verma et al., 2015 Dawit et al., 2017; 
Jeberson et al., 2017; Gadisa et al., 2021;  Abebe et al., 2022, 
Abebe et al., 2023), indicating environments and interaction 
effects are much more than the effect of genotypes. The 
highly significant environmental effect and its high variance 
component could be attributed to the large difference 
between the test locations in altitude, daily temperature, 
and a difference in both amount and distribution of rainfall. 
Similarly Abebe et al. (2023) indicated that the presence of  
GEI mainly attributed to different factors such as soil type, 
pests, altitude, rainfall, temperature and humidity. Dawit et 
al., 2017, Gadisa et al., 2019, Gadisa et al., 2020, Abebe et 
al., 2022, Abebe et al., 2023 reported that bread wheat grain 
yield was significantly affected by the environment. The 
amount of variance contributed by GEI (20.2%) was larger 
than that contributed by the genotype (3.75%) main effect. 
This result indicated that there was a noticeable GEI effect 
present in bread wheat multi-environment data, leading to 
a substantial difference in genotypic responses across the 
test environments. This result was in agreement with the 
reports of Somayeh et al. (2019) and Assefa et al. (2020). 
The presence of significant G×E interaction showed the 
differential performance of bread wheat genotypes across 
environments and unstable performance of genotypes 
across the different testing locations and complicates 
the selection and recommendation of genotypes in a 
specified environment. This implies a selected thirty bread 
wheat genotype might not exhibit constant phenotypic 
performance underneath totally different environmental 
conditions or different genotypes might respond otherwise 
to a particular environment.

3.1.  Mean performance of advanced bread wheat genotypes

Kulumsa-2017 had the highest location mean yield (7.7 
t ha-1), followed by Kul-2018 (7.4 t ha-1) and Asasa-2018 
(6.6 t ha-1), while Robe Arsi-2018 had the lowest location 
mean yield (2.5 t ha-1), Robe Arsi-2017 (2.9 t ha-1), and 
Bekoji-2017 (3.0 t ha-1), indicating sub-seasonal variations 
among test environments (Figure 2). Thus, diverse climates 
across locations and years demonstrated the existence of 
significant heterogeneity in wheat productivity within 
the country’s optimum moisture and highlands regions. 
Robe Arsi is a soggy environment with limited pre-season 
and seasonal rainfall, but Kulumsa is a high-yielding 
environment with plenty of pre-season and seasonal rainfall. 
Among the testing locations, eight yielded more than the 
location mean (4.6 t ha-1 ). The remaining sites all produce 
less than the average yield (4.6 t ha-1).

 

Figure 2:  The mean performance of grain yield over environments Figure 2: The mean performance of grain yield over 
environments
The genotype’s average yield of grains varied with 
environment, ranging from 3.67 t ha-1 for ETBW8804 
to 5.12 t ha-1 for ETBW8751 (Figure 3). Only two 
genotypes were ranked first in two locations: ETBW9557 
in Enawari-2017 and Awaligara-2017 and ETBW9560 in 
the Robe Arsi-2017 and Bekoji-2017. This suggests that 
the genotypes’ performance in terms of grain yield and other 
parameters showed more cross-over interaction (Kaya et al., 
2006). According to Yan and Hunt (2001), differential yield 
ranking of genotypes across environments revealed that the 
G E interaction effect was of the crossover type

3.2.  Reaction to the foremost wheat diseases

Foliar fungal diseases may cause important losses on yield 
and quality of (Simon et al., 2020). Despite the  high 
stripe rust disease pressure, the genotype ETBW9554, 
and ETBW9553 exhibited adequate  level of resistance to 
yellow rust disease (Table 5). Genotypes with slow rusting 
resistance would be quite important to achieve effective 
breeding for durable resistance to stripe rust (Nzuve et al., 
2012). The standard check variety, Wane which was released 
in 2016 showed moderately susceptible reaction response to 
both yellow and stem rust while  the the other local check,  
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Figure 3: Mean performance of advanced bread wheat genotypes 

Figure 3: Mean performance of advanced bread wheat 
genotypes

Table 5: Reaction to the major wheat diseases

Disease ETBW9554 ETBW9553 Wane (standard check) Hidasse (local check)

Stem rust (%+ reaction) 5MR TR 10MS 80S

Yellow rust (%+reaction) 5R TMR 5MS 60S

Leaf rust (%+ reaction) 0 0 0 0

Septoria (00-99) 21 32 12 56

Hidasse exhibited  susceptible reactions to both yellow and 
stem rust (Table 5). The newly released bread wheat varieties 
are moderately resistant to stem rust, and septoria leaf blotch 
compared to  the checks  as well (Table 5).

Alemu et al., 2023

3.3.  AMMI analysis

The results of the analysis of variance of the AMMI model 
revealed that grain yield is significantly (p<0.001) affected 
by environment, genotype and genotype by environment 
interaction (Table 3) which explained 76.05%, 3.75% 
and 20.2% of the occurred variation, respectively (Table 
4). Furthermore, Only 4 PCs out of the 16 components 
included in the AMMI model’s breakdown of the GEI are 
significant, accounting for 73.45% of the square’s overall 
amount.  Several authors reported similar observations  
in bread wheat (Kaya et al., 2002, Ahmadi et al., 2012, 
Farshadfar and Sadeghi, 2014, Hassan et al., 2017, Singh 
et al., 2019, Gadisa et al., 2020, Gadisa et al., 2021, Abebe 
et al., 2022, Abebe et al., 2023, Gupta et al., 2023), durum 
wheat (Mohammadi et al., 2007), barley (Zerihun, 2012), 
maize (Haruna et al., 2017), sorghum (Rakshit et al., 2012), 

soybean (Asrat, 2009), mungbean (Thangavel et al., 2011), 
field pea (Tamene et al., 2013), chickpea (Assefa et al., 2017), 
cowpea (Tariku, 2018), linseed (Adane and Abebe, 2018), 
and cassava (Boakye et al., 2013) suggesting the existence of 
wide variability among environments, among genotypes and 
the possibility of selection for high yielding, best performing 
and stable genotypes. Results showed variability within the 
bread wheat grain yield of various genotypes at different 
locations and located that it would be ideal to decide on a 
bread wheat genotype with higher grain yield and higher 
stability. There are two basic AMMI biplots, the AMMI 1 
biplot (Figure 4), and the AMMI 2 biplot (Figure 5).

3.4.  AMMI 1 biplot analysis

In AMMI 1 biplot, the differences among genotypes in 
terms of direction and magnitude along with the X-axis 
(yield) and Y-axis (IPCA 1 scores) are important. In the 
biplot display, genotypes or environments that appear 
almost on a perpendicular line of the graph had similar 
mean yields and those that fall almost on a horizontal 
line had similar interaction. The score and sign of IPCA1 
reflect the magnitude of the contribution of both genotypes 
and environments to GEI, where scores near zero are 
characteristic of stability, whereas higher scores (absolute 
value) are considered unstable and specifically adapted to a 
certain environment. The characterization of each promising 
genotype to mean grain yield and contribution to GEI 

Figure 4: AMMI 1 biplot analysis for the mean grain yield (t 
ha-1) with first IPCA score in 30 bread wheat genotypes from 
seventeen environments

 

 

figure 4 : AMMI 1 biplot analysis for the mean grain yield (t ha-1) with first IPCA score in 30 bread wheat genotypes from seventeen 
environments 

by mean of IPCA1 (Figure 4) indicates that Genotype 
11 (ETBW8668), 4 (ETBW8870), 3 (ETBW8858), 
13 (ETBW8684), 23 (ETBW9555), 24 (ETBW9556), 
19 (ETBW9551), 1 (Wane), 18 (ETBW9550), and 10 
(ETBW8583) were near to zero IPCA1 by which was 
shown to have higher stability for yield than other genotypes 
and were the overall winner with less variable yield across 
the environments explaining its suitability as one of the 
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Figure 5: AMMI 2 Biplot of IPCA 1 against IPCA 2 for 
grain yield of 30bread wheat genotypes tested across seventeen 
locations
leading promising advanced genotypes for such trials 
(Figure 4). This finding was in agreement with  Kadhem 
and Baktash (2016), Verma et al. (2016), and Jeberson et al. 
(2017). The  genotypes 6 (ETBW8991), 9 (ETBW8996), 
22 (ETBW9554), and 25 (ETBW9557) were specifically 
adapted to high yielding environments with grain yield more 
than grand average yield (Figure 4). However, genotype 
30 (Hidasse) was adapted to low yielding environment but 
not stable

3.5.  AMMI 2 biplot analysis

AMMI2 analysis positioned the genotypes in numerous 
sections containing different locations, indicating the 
interaction pattern of the genotypes. On the opposite, 
the IPCA scores of a genotype in the AMMI analysis are 
reported as an indication of the stability of a genotype 
across environments (Purchase et al., 2000). Accordingly, 
the nearer the IPCA scores are to zero (origin), the more 
stable the genotypes are across all their testing environments 
(Purchase et al., 2000). The genotypes on the upper and the 
right side of the graph had a positive interaction between 
the two IPCA1 and IPCA2 axes and the genotypes located 
on the lower and the left side of the graph had a negative 
interaction between the two axes. Since the IPCA2 
explained interactions were lower than IPCA1, genotypes 
that had a positive or negative interaction with the IPCA1 
axis compared to the IPCA2 axis are going to be recognized 
as high-interactions genotypes. During this study, the 
AMMI model was able to identify high-yielding and stable 
genotypes to some extent. The genotypes in the middle of 
the graph had less interaction with each IPCA1 and IPCA2 
axes. Genotypes close to the origin are non-sensitive to 
environmental interactive forces and those distant from the 
origin are sensitive and have large interactions (Samonte 

et al., 2005). Accordingly, genotypes ETBW8668 (G11), 
ETBW8870 (G4), ETBW8858 (G3), ETBW8684 (G13), 
ETBW9555 (G23), and ETBW9556 (G24) showed 
lesser differential response to the changes in the growing 
environments as compared to the other genotypes and were 
recognized as stable genotypes based on AMMI-II biplot 
while ETBW9547 (G15), Hidasse (G30), and ETBW9559 
(G27) were highly influenced by the interactive force of 
environment and sensitive to environmental changes, scored 
the highest IPCA-1; they are considered as non-stable and 
showed the highest levels of interaction (Figure 5).

3.6.  GGE biplot analysis

One of the best interesting features of a GGE biplot is 
its ability to point out the which-won-where model of a 
GEI dataset and the vertex genotype(s) for each sector has 
a higher (sometimes the highest) yield than the others in 
all environments that fall in the sector. According to Yan 
and Tinker (2006) and Hagos and Abay (2013), the vertex 
genotypes were the most responsive genotypes as they had 
the longest distance from the origin in their direction. 
The vertex genotypes could be either best performing or 
poorest at one or many environments (Yan and Rajcan, 
2002; Yan et al., 2007; Mehari et al., 2015). The sectors that 
received environments, the vertex genotypes are specifically 
suitable to those environments. Therefore, according to 
Figure 6, 17 environments were grouped into 4 sectors 
as mega environments, and genotypes were also grouped 
into 5 sectors. Areka-2018 (E-7), Aweli Gera-2017 (E-
16), and Debre Zeit-2017 (E-17) fall into the first mega-
environments correlated in genotypic ranking, and these 
environments genotypes did not differ significantly from each 
other, with the vertex genotype of this mega-environment 
being 30 (Hidasse) and the high-yielding genotype of these 

 

 

Figure 5: AMMI 2 Biplot of IPCA 1 against IPCA 2 for grain yield of 30bread wheat genotypes tested across seventeen locations 

 

 

 

Figure 6. Which-won-where pattern of GGE biplot based on the mean yield of 30 wheat genotypes evaluated across seventeen 
environments. 
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four environments being 30 (Hidasse). Other five genotypes 
7 (ETBW8862), 25 (ETBW9557), 27 (ETBW9559), 
28 (ETBW9560) and 29 (ETBW9561)) were fell under 
sector one. The second mega environment contained 
environments of Bekoji-2018 (E-3), Kulumsa-2018 (E-4), 
Holeta-2018 (E-5), Enawari-2018 (E-8), Kulumsa-2017 
(E-11) and Robe Arsi-2017 (E-12) and included genotype 
22 (ETBW9554) as vertex and genotype 6 (ETBW8991), 
9 (ETBW8996), 12 (ETBW8595), 13 (ETBW8684) 
as the genotype member. The third Mega-environment 
contained two environments Asasa-2017, and Bekoji-2017 
with winning genotype 21 (ETBW9553), and the other 
three genotypes are grouped under this sector namely 
genotype 1 (Wane), 4 (ETBW8870), and 11 (ETBW8668). 
Similarly, four environments, Robe-Arsi-2018, Asasa-2018, 
Kulumsa-2018, and Robe Arsi-2017 fell into the fourth 
mega environments with vertex genotype 15 (ETBW9547) 
and genotype 2 (ETBW8751), 3 (ETBW8858), 16 
(ETBW9548), and 26 (ETBW9558) as the genotype 
member for this sector. No environment fell in sector five 
and the sector includes genotype 8 (ETBW8804) as vertex 
genotypes and genotype 5 (ETBW8802), 14 (ETBW9486), 
17 (ETBW9549), 18 (ETBW9550), 19 (ETBW9551), 20 
(ETBW9552), 23 (ETBW9555) and 24 (ETBW9556) 
as the genotype members and demonstrating that these 
genotypes were the lowest yielding genotypes, they were 
poorly performed in all environments.

3.7.  Mean performance and stability of genotypes using GGE 
biplot

In Figure 7 X-axis is an indicator of grain mean yield, while 
Y-axis exhibits stability of genotypes. Therefore it is possible 
to identify simultaneously genotypes with high yield with 
stability. This is further demonstrated using average PC1 
and PC2 scores for all environments and is indicated by 
a small circle. The ordinate of the AEC is the line that 
passes through the origin and is perpendicular to the AEC 
abscissa (Figure 7). Unlike the AEC abscissa, which has 
one direction, with the arrow pointing to greater genotype 
main effect, the AEC ordinate is indicated by double arrows, 
and either direction away from the biplot origin indicates 
greater GEI effect and reduced stability. The AEC ordinate 
separates genotypes with below-average means from 
those with above-average means. The biplot displayed the 
pattern of variability of genotypes, environment, and their 
interactions and stability. According to Figure 7, genotypes 
with above-average means were from 21 (ETBW9553), 
22 (ETBW9554), 2 (ETBW8751), 11 (ETBW8668), 9 
(ETBW8996), 6 (ETBW8991) and 3 (ETBW8858) were 
near to ideal genotypes while genotypes below-average 
means were from 8 (ETBW8804), 20 (ETBW9552), 
23 (ETBW9555), 18 (ETBW9550), 17 (ETBW9549), 
19 (ETBW9551) and 14 (ETBW9486). However, the 

length of the average environment vector was sufficient 
to select genotypes based on yield mean performances. 
Genotypes with above-average means 21 (ETBW9553), 
22 (ETBW9554), 2 (ETBW8751), 11 (ETBW8668), 
9 (ETBW8996), 6 (ETBW8991) and 3 (ETBW 8858) 
could be selected, whereas the rest were discarded. On the 
other hand, genotypic stability is quite crucial in addition to 
the genotype yield mean. A longer projection to the AEC 
ordinate, regardless of the direction, represents a greater 
tendency of the GE interaction of a genotype, which means 
it is more variable and less stable across environments or vice 
versa. For instance, genotype 21 (ETBW9553) was more 
stable as well as high yielding followed by 22 (ETBW9554) 
and 2 (ETBW8751. Conversely, 15 (ETBW9547) was 
unstable, but high yielding.

3.8.  Ranking of environments based on differentiation and 
representative of environments

Genotype and GEI  biplot analysis was also used to classify 
and identify the most discriminative and representative 
locations. The line connecting each location to the origin 
in the biplot is called the vector. Locations with longer and 
shorter vectors are considered more and less discriminative, 
respectively, of the genotypes. Most locations were 
discriminative for genotypes, as shown by their position away 
from the biplot origin. However, locations differed greatly 
in their discriminative ability, as shown by their proximity 
to the origin of the biplot and different vector lengths. For 
grain yield, among the seventeen environments, Areka-2017 
(E-15), Aweli Gera-2017 (E-16), Shambu-2017 (E-9), 
Holeta-2018 (E-5), and Asasa-2018 (E-2) were the most 
discriminating (informative) as depicted by the longest 
vector, whereas Areka-2018 (E-7), Enawari-2018 (E-8) 

Figure 7: Mean Performance and stability of genotypes using 
GGE Biplot
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and Debra Zeit-2017 (E-17) were the least discriminating, 
having the shortest vector (Figure 8). The representativeness 
of the test environments with a small angle to the average 
environmental axis (AEA) is more representative than other 
test environments. The environment Asasa-2017(E-10) and 
Bekoji-2017(E-13) were more representative than other 
environments for grain yield. Test environments, which 
were consistently non-discriminating (non-informative), 
provided little information on the genotypes and, therefore, 
can be omitted as test locations. However, the locations with 
long vectors and large angles with AEC abscissa cannot 
be used to select superior genotypes, but are effective to 
eliminate unstable genotypes.

the GGE biplot, it is easy to construct which-won-where 
which is easier to visualize the which-won-where patterns 
than AMMI1graph for mega-environment analysis in 
that it explains more G+GE. The mean vs. stability view 
of the GGE biplot is explain more about G+GE than the 
AMMI1 biplot for genotype evaluation so, it is superior 
to the AMMI1 biplot. The discriminating power vs. 
representativeness view of the GGE biplot is an efficient 
tool for test-environment evaluation, which may lead to 
the identification of a minimum set of discriminating 
and representative test environments. The G and GE 
are specific to the environments during which they are 
estimated, and G and GE are interchangeable, counting 
on the scope of the environments. This understanding is 
the basis and justification for mega-environment analysis 
and GE analysis. While genotypes are often considered to 
represent wide adaptation, it is only as wide because that 
range of the test environments allows; specific adaptation 
to be determined by both G and GE rather than by GE 
alone. Both models identify similar genotypes as stable 
and high-yielding genotypes. According to AMMI and 
GGE analysis genotype 21 (ETBW9553) was more stable 
as well as high yielding followed by 22 ETBW9554) and 2 
(ETBW8751. Conversely, 15 (ETBW9547) was unstable, 
but high yielding.

4.   CONCLUSION

The study has identified promising genotypes, 
ETBW9554 and ETBW9553 as most resistant to 

wheat rust which also combines high yield and other 
useful agronomic traits, indicating that these traits can 
be combined in wheat as preferred by farmers. Finally, 
ETBW9554 has been officially released by the National 
Variety Releasing Committee (NVRC)  of the country, 
with the common name Boru for large-scale production 
and ETBW9553 genotype was including in crossing block 
as parents.
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3.9.  Comparison of AMMI and GGE biplot analyses

The two sources of variation that are very important for 
mega-environment analysis, genotype evaluation, and 
test-environment evaluation are G and GE; they need to 
be considered simultaneously for these purposes. These 
two sources of variations are combined instead of separate 
by AMMI analysis and GGE biplot analysis in mega-
environment analysis and genotype evaluation; AMMI 
graphs for these purposes also are “GGE” graphs. In our 
study, AMMI explained 48.15% of the total variation in 
the first two components while GGE explained 45.90% 
of the total variation in the first two components. GGE 
and AMMI analysis explained almost similar amounts 
of variation; however, AMMI still show a slightly greater 
proportion than GGE during our study. Similar to this result 
(Hongyu et al.,2015) also reported that AMMI explains a 
slightly greater amount than GGE. The same author also 
compared AMMI and GGE analysis in a similar way to that 
presented in this study, showing the advantages of including 
both models in the analysis to exploit their strengths. In 
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