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A study was conducted during the kharif ( June–September) season of 2018 at G.B.P.U.A.&T., Pantnagar, Uttarakhand, 
India to calibrate and validate the CROPGRO-soybean model for Terai region and determine the optimal management 

practices for soybean variety PS1347. The experiment followed a Two Factorial Randomized Block Design, involving two 
fertilizer treatments with three sowing dates replicated thrice. The CROPGRO model was calibrated and validated using the 
field data of 2018 and 2017, respectively. The RMSE% between the observed and simulated values of different crop stages and 
yield indicators were between 3.24% and 14.22%. Subsequently, the crop yield for different management practices was also 
simulated. The model encompassed yield simulations for various management practices viz., six tillage methods, five fertilizer 
treatments, nine sowing dates, and six irrigation levels. To achieve error minimization, soybean yield was simulated for four 
consecutive years (2015–2018) under various management practices, and the data was averaged. The simulation results indicated 
that the optimal management practices for achieving the highest soybean yield include sowing the seeds on the 20th June after 
implementing a tillage regimen involving three ploughings and two harrowing operations and further nourishing the crop with 
fertilizer dose of N:P:K:S::25:60:40:20 and applying 90 mm of irrigation. These findings will aid in optimizing management 
practices and developing sustainable and efficient approaches to achieve higher soybean yields with minimal inputs.
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1.   INTRODUCTION

Soybean (Glycine max L. Merr.) is a highly productive, 
nutritional and profitable legume crop with diverse 

applications worldwide (Yoosefzadeh-Najafabadi et al., 
2021). It plays a vital role in global vegetable oil production 
and serves as a valuable protein source for both humans and 
livestock (Choudhary et al., 2015; Das et al., 2016; Yusefi-
Tanha et al., 2023). This versatile crop not only offers 
high protein content but also has the ability to enhance 
soil fertility, making it valuable in addressing nutritional 
security (Dass and Bhattacharyya, 2017). Furthermore, 
soybean seeds contain essential amino acids and important 
micronutrients such as zinc, iron, and manganese (Kobraee 
et al., 2013), making it a well-rounded food choice in Indian 
diets (Dass et al., 2022). 

Meeting the escalating demands for food, feed, and 
bioenergy relies heavily on agricultural productivity (Spiertz 
and Ewert, 2009). Although there has been notable progress 
in terms of coverage and overall production, sustainability 
of high soybean productivity continues to face various 
constraints related to climate, soil conditions, production 
factors, and technological aspects (Agarwal et al., 2013). To 
ensure sustainable production and maximize soybean yield, 
it is imperative to adopt advanced approaches that optimize 
management strategies while minimizing environmental 
impacts (Balasundram et al., 2023). Maximizing crop yield 
necessitates the meticulous selection and optimization of 
management practices like irrigation (Roy et al., 2019), 
sowing date (Bateman et al., 2020), tillage and fertilization 
(Young et al., 2021). The interdependence of these practices 
implies that the outcome of one practice can be influenced 
by others. While a single practice may yield favorable 
results when assessed individually, its performance can be 
compromised when integrated with other practices, leading 
to reduced output. Consequently, it is crucial to identify the 
most effective combination of management practices, while 
minimizing inputs, in order to optimize crop yield within 
specific conditions.

Crop simulation models have been created and utilized as 
instruments for identifying stringent management strategies 
specific to a given location by considering variables such 
as fertilizer application rates, plant density, sowing dates, 
and land use options (Boote et al., 1996; Ruiz-Nogueira 
et al., 2001; Bebeley et al., 2022). Among the various 
simulation models available, the CROPGRO model has 
gained widespread recognition as it aids decision-making 
for enhancing production by analyzing climate variability, 
management practices, and varietal selection under specific 
and future environmental conditions (Nath et al., 2017). 
The CROPGRO model, developed by the Decision 
Support System for Agrotechnology Transfer (DSSAT) 

initiative, has consistently shown good performance in 
simulating crop responses to detailed physiological processes 
and environmental factors (Bhatia et al., 2008; Bao et 
al., 2015a; Salmerón and Purcell, 2016; Hoogenboom et 
al., 2019). CROPGRO model has been widely used for 
simulation of crop yields of several agricultural crops like 
soybean, cotton, alfa alfa etc. (Malik et al., 2018; Dar et 
al., 2023). Previous studies have utilized the CROPGRO 
model to simulate soybean yield under various parameters 
and conditions, such as climate change scenarios (Bao et al., 
2015b; Battisti et al., 2017; Nath et al., 2018; MacCarthy 
et al., 2022), sowing timings (Ruiz-Nogueira et al., 2001; 
Bebeley et al., 2022), and water management strategies 
(Dogan et al., 2007; Bhatia et al., 2008; Sharda et al., 
2019). However, these studies were conducted focusing 
on specific factors. Meanwhile, the present study focuses 
on calibration and validation of CROPGRO model for 
optimizing soybean yield considering a diverse range of crop 
management practices, including tillage, irrigation, sowing 
date, and fertilization. Additionally, it aims to determine 
the optimal combination of these management practices 
that maximizes soybean yield. The findings of this study 
will provide valuable insights and recommendations for 
soybean growers, facilitating the development of sustainable 
and efficient practices that help in achieving better soybean 
yield using minimal inputs. 

2.   MATERIALS AND METHODS

2.1.  Experimental site 

The experiment was conducted in the E4 plot (Latitude 
29.08°N, Longitude 79.28°E, and Altitude 243.84 meters 
above mean sea level) within the Norman E. Borlaug 
Crop Research Centre of G.B.P.U.A.&T, Pantnagar in 
Uttarakhand, India. Pantnagar is situated in the Terai 
region of the Himalaya belt. The experiment took place 
during the kharif season (June–September) in the year 
2018, specifically focusing on the soybean crop variety 
PS1347. The selected site, E4 plot, is characterized by 
sandy loam texture. The climate of the Pantnagar region 
is classified as humid subtropical, characterized by hot and 
dry summers and cool winters. The maximum temperature 
of Pantnagar during summer goes up to 42oC while winter 
temperature falls as low as 1oC. The month of May exhibits 
the highest recorded temperature of the year, while January 
typically experiences the lowest temperatures. The study 
area experiences a mean annual rainfall ranging from 1300 
to 1400 mm. The monsoon season, spanning from June to 
September, accounts for approximately 80% of the annual 
rainfall. July and August are the wettest months, whereas 
the period from November to April is considered among 
the driest months of the year.
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2.2.  Calibration and validation of the CROPGRO model

The primary objective of this study was to optimize soybean 
yield under various management practices utilizing the 
CROPGRO simulation model. The genotypic coefficient 
for soybean variety PS1347 generated for Pantnagar 
region was used in the study. The CROPGRO model was 
calibrated using the 2018 dataset, incorporating all observed 
values from the field. The model’s simulation capability was 
assessed by examining its performance in predicting various 
observed field variables, including emergence, anthesis, 
physiological maturity, grain yield, biological yield, and 
harvest index. In order to verify the accuracy of the model, 
a comparison was made between the model simulated values 
and the observed values from the field. An iterative process 
of trial and error was implemented to reduce the error in the 
simulation. Model validation was performed by comparing 
the simulated dataset with the observed dataset obtained 
from field experiments conducted during the kharif (June–
September) season of 2017. Simulated values within the 
projected confidence interval were considered valid for the 
simulation. To evaluate the model’s performance, the root 
mean square error percentage (RMSE%) was calculated. 
Finally, after accomplishing the calibration and validation 
of CROPGRO model, it was employed to forecast the yield 
under different management practices. 

2.3.  Crop management practices

The sowing of the soybean crop was carried out using two 
fertilizer treatments: Site-Specific Nutrient Management 
(SSNM) F1- N:P:K:S::25:50:50:30, and Nitrogen Omission 

F2- P:K:S::50:50:30. Each treatment was replicated thrice 
and implemented on three different sowing dates viz., D1 
(29th June), D2 (9

th July), and D3 (19th July). The experiment 
was conducted following a two Factorial Randomized Block 
Design. The plant growth and development parameters 
were recorded for kharif (June–September) season of 
2018. Weather data for the entire season was collected 
from the Agrometeorological Observatory of C.R.C. 
G.B.P.U.A.&T, Pantnagar. 

In the process of selecting the best management practices, 
different practices like six tillage treatments, five fertilizer 
options, nine sowing dates, and six irrigation levels were 
compared to determine the combination that would produce 
the highest soybean yield at a low cost. The CROPGRO 
model was employed to calculate the simulated yield for four 
consecutive years, namely 2015, 2016, 2017, and 2018, for 
each treatment. Subsequently, the four-year average of the 
simulated yield was computed for each treatment with the 
aim to minimize the error in the simulations. The obtained 
results were then analyzed and interpreted to determine the 
optimal combination of management practices that can 
maximize soybean yield.

2.3.1.  Tillage treatments

Table 1 presents various tillage treatments, including their 
dates, operations, and implements used. The treatments 
differ in terms of the number of operations conducted, 
implements employed, and ploughing depths. Some 
treatments involved multiple operations such as ploughing 
and harrowing, while others focused on specific implements 
like the chisel plough, harrow tine, or cultivator field. 
Additionally, variations in yield against different ploughing 
depths (10 cm, 20 cm and 30 cm) were tested. These 
differences in tillage treatments demonstrate the range of 
approaches evaluated in the study, highlighting the potential 
impact of different tillage strategies on yield of soybean crop. 
The four-year average yield (2015–2018) results obtained 
under different tillage treatments were analyzed to obtain 
the best tillage treatment that can produce maximum yield 
under a given fertilizer treatment on a specific sowing date.

2.3.2.  Fertilizer doses

A total of five fertilizer doses were used to simulate the 
soybean crop yield (Table 2). The differences in the fertilizer 
doses mainly lie in the relative proportions of nitrogen 
(N), phosphorus (P), potassium (K), and sulfur (S). These 
variations in nutrient ratios can have significant impacts 
on plant nutrition, growth, and development. Choosing 
the appropriate fertilizer dose with the desired nutrient 
composition is crucial for optimizing plant productivity 
and achieving specific agricultural goals. The best fertilizer 
treatment was selected after evaluating the simulated yield 
of soybean crop for different treatments (f1, f2, f3, f4, and f5) 

 

Figure 1: Study area map of experimental site at Pantnagar
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nine different sowing dates taken at 10 day intervals from 
30th May to 20th August viz., 30th May, 10th June, 20th June, 
30th June, 10th July, 20th July, 30th July, 10th August and 20th 
August.

2.3.4.  Irrigation

A total of six irrigation levels viz., 40 mm, 50 mm, 60 mm, 
70 mm, 80 mm, and 90 mm were used to determine the best 
irrigation level that would result in the highest soybean yield.

3.   RESULTS AND DISCUSSION 	

3.1.  Calibration and validation of CROPGRO model

Various plant growth and development parameters, such as, 
emergence, anthesis, days to physiological maturity, grain 
yield, biological yield, and harvest index were observed and 
simulated for the year 2018. The observed and simulated 
data on the occurrence of different crop stages during the 
crop season are presented in Table 3. Regardless of the 
fertilizer treatment or sowing date, the observed field data 
shows that crop generally took around 4–5 days to emerge 
after sowing. Anthesis occurred after approximately 49–57 
days, while physiological maturity ranged from 95–123 
days after sowing. Upon examining the relation between 
observed and simulated values of different crop stages at 
various treatments and sowing dates, several patterns were 
observed. In general, there is a notable level of consistency 

Table 2: Different fertilizer doses used for yield optimization

Symbols Fertilizer doses

f1 N:P:K:S::25:60:40:20

f2 N:P:K:S::25:80:40:20

f3 N:P:K:S::20:60:40:20

f4 N:P:K:S::25:80:50:20

f5 N:P:K:S::20:80:40:20

Table 3: Observed and simulated readings of different crop growth stages in relation to various fertilizer treatments and 
sowing dates

Fertilizer treatments Date of sowing Crop growth stages

Emergence
(days after sowing)

Anthesis
(days after sowing)

Physiological maturity
(days after sowing)

Observed Simulated Observed Simulated Observed Simulated

SSNM D1 (29th June) 5 5 57 59 123 104

D2 (9
th July) 5 5 57 59 123 104

D3 (19th July) 4 4 54 53 100 96

N Omission D1 (29th June) 5 4 54 53 100 96

D2 (9
th July) 4 4 49 47 95 90

D3 (19th July) 4 4 49 47 95 90

RMSE (%) 9.07 3.24 10.92

Table 1: Tillage treatment combinations used to simulate 
soybean yield

Treat-
ments

Date Tillage 
operation

Implements used

Tillage 1 
(T1)

June 22nd Ploughing Chisel plough straight 
point (30 cm)

June 26th  Ploughing Cultivator field (20 cm)

Tillage 2 
(T2)

June 25th    Ploughing Chisel plough straight 
point (30 cm)

June 26th    Harrowing Harrow tine (10 cm)

June 27th Ploughing Cultivator field (20 cm)

Tillage 3 
(T3)

June 25th Ploughing   Chisel plough straight 
point (30 cm)

June 26th Harrowing Harrow tine (10 cm)

June 27th Harrowing Harrow tine (10 cm)

June 28th Ploughing Cultivator field (15 cm)

June 29th Ploughing Cultivator field (15 cm)

Tillage 4 
(T4)

June 25th Ploughing Chisel plough straight 
point (30 cm)

June 26th Harrowing Harrow tine (10 cm)

June 27th Harrowing Harrow tine (10 cm)

June 28th  Ploughing Cultivator field (20 cm)

June 29th  Ploughing Cultivator field (20 cm)

Tillage 5 
(T5)

June 29th Ploughing Cultivator field (20 cm)

Tillage 6 
(T6)

June 29th  Ploughing Cultivator field (15 cm)

using CROPGRO simulation model.

2.3.3.  Date of sowing

The comparison of simulated soybean yield was done at 
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between the observed and simulated values across different 
crop stages for varying treatments, and sowing dates. This 
suggests that the simulation model is capable of accurately 
predicting the crop growth stages. The observed and 
simulated values of emergence (RMSE: 9.07%) and anthesis 
(RMSE: 3.24%), tend to closely align with each other 
across most treatments and sowing dates, indicating that 
the model performs well in capturing the timing of these 
key growth stages. However, in some instances, there are 
slight discrepancies between the observed and simulated 
values for the variable of physiological maturity (RMSE: 
10.92%). The simulated values may deviate slightly from the 
observed values, suggesting a margin of error in predicting 
the completion of this growth stage.

By comparing the observed and simulated values across 
different fertilizer treatments and sowing dates, it is possible 
to assess the effects of these factors on crop growth stages. 
Under the SSNM treatment, both observed and simulated 
values of crop stages (emergence, anthesis, and physiological 
maturity) show consistency across different sowing dates. 
This indicates that the fertilizer application according to 
site-specific nutrient management has a positive impact 
on crop growth stages. In the N Omission treatment, the 
observed and simulated values of crop stages are slightly 
lower compared to the SSNM treatment. This suggests 
that the omission of nitrogen fertilizer has a slight negative 
impact on crop growth, leading to a delay in growth stages. 
For both fertilizer treatments, the observed and simulated 
values of crop stages are generally higher on D1 (29th June) 
compared to the other sowing dates. This indicates that 
early sowing promotes faster crop growth and development. 
While, for both D2 (9

th July) and D3 (19th July), the observed 
and simulated values of crop stages are slightly lower 
compared to the D1 sowing date. The fertilizer treatments 
and sowing dates have a noticeable impact on the observed 

and simulated values of different crop stages. The SSNM 
treatment generally leads to better crop growth, while the 
omission of nitrogen fertilizer (N Omission treatment) 
results in slightly lower growth stages. Additionally, early 
sowing (D1) tends to promote faster crop growth, while 
later sowing dates (D2 and D3) may cause a slight delay in 
crop development. These findings highlight the importance 
of appropriate fertilizer management and timely sowing 
practices to optimize crop growth. (Rathore et al., 2019) 
Overall, the relation between observed and simulated values 
indicates that the simulation model is generally reliable in 
predicting the crop growth stages. The simulation results 
from Yadav et al. (2012) demonstrated that the DSSAT 
model satisfactorily simulates anthesis (days after sowing), 
first pod (days after sowing), maturity (days after sowing), 
leaf area index, pod yield, harvest index, and shelling 
percentage. Boulch et al. (2021) evaluated the adaptation 
potential of soybean under different agro-climatic scenarios 
using CROPGRO model and obtained good simulation for 
different crop stages of soybean crop. Mishra et al. (2021) 
observed favorable model simulations for cotton cultivars 
across different sowing dates, specifically from anthesis 
to physiological maturity, indicating proficient predictive 
capabilities of CROPGRO model. 

Table 4 provides information on the relation between 
observed and simulated values of different crop yield 
indicators at various fertilizer treatments and sowing dates. 
The observed and simulated grain yield (RMSE: 7.2%), 
biological yield (RMSE: 8.62%), and harvest index (RMSE: 
14.22%) values under both the SSNM and N Omission 
treatments are quite similar, indicating good agreement 
between the observed data and the simulation results. Under 
SSNM, the differences between the observed and simulated 
values are relatively small, suggesting that the simulation 
accurately represents the actual crop performance. However, 

Table 4: Observed and simulated readings of different crop yield indicators in relation to various fertilizer treatments and 
sowing dates

Fertilizer treatments Date of sowing Crop yield indicators

Grain yield
(kg ha-1)

Biological yield
(kg ha-1)

Harvest Index
(%)

Observed Simulated Observed Simulated Observed Simulated

SSNM D1 (29th June) 2469 2466 6543 6564 38 39

D2 (9
th July) 2074 2434 6272 6510 33 39

D3 (19th July) 2290 2313 6497 5940 35 38

N Omission D1 (29th June) 2275 2298 6152 5879 37 39

D2 (9
th July) 2100 2205 6275 5163 33 43

D3 (19th July) 2074 2175 5124 5035 40 43

RMSE (%) 7.2 8.62 14.22
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there are slightly larger differences in N Omission compared 
to the SSNM treatment, indicating a relatively higher level 
of uncertainty in the simulation results due to the absence 
of nitrogen fertilizer. The differences between observed 
and simulated values of crop yield indicators for D1 (29th 
June) are relatively small, suggesting that the simulation 
accurately captures the crop performance for this sowing 
date. Whereas, the observed and simulated values for the 
later sowing dates (D2: 9th July and D3: 19th July) show 
slightly greater differences compared to the D1 sowing 
date. Overall, the observed and simulated values of crop 
yield indicators demonstrate a reasonably close agreement, 
indicating that the simulation model is capable of capturing 
the general trends and patterns in crop performance. da 
Silva et al. (2021) also found that CROPGRO showed 
good agreement between simulated and observed results 
of soybean yield under climate change scenario. However, 
some differences between observed and simulated values 
exist, which can be attributed to various factors such as 
variations in field conditions, uncertainties in parameter 
estimation, limitations of the simulation model, biotic 
stresses, and factors not considered in the model (Liu et 
al., 2011; Quansah et al., 2020). But these differences are 

relatively smaller and can be taken care of while interpreting 
and utilizing the simulated results for decision-making 
purposes. 

3.2.  Comparison of simulated yield with different management 
practices

3.2.1.  Tillage treatment

Table 5 highlights the influence of different tillage 
treatments and sowing dates on the simulated yields of the 
crops under investigation. In the SSNM experiment, the 
maximum simulated yield (2291.00 kg ha-1) was observed 
under tillage treatment T4 and sowing date D1 (29th June). 
This combination yielded the highest simulated yield among 
all the options presented in the table. On the other hand, the 
minimum simulated yield (2041.25 kg ha-1) in the SSNM 
experiment was observed under tillage treatment T4 and 
sowing date D3 (19th July). In the N omission experiment, 
the maximum simulated yield (2263.25 kg ha-1) occurs 
under tillage treatment T2 and sowing date D1 (29th June). 
The minimum simulated yield (1989.50 kg ha-1) in the N 
omission experiment was observed under tillage treatment 
T5 and sowing date D3 (19th July). The combination of tillage 
treatment T4 and sowing date D1 (29th June) consistently 

Table 5: Comparison of four-year average of simulated soybean yield under different tillage treatments

Fertilizer treatments Date of sowing Simulated yield (kg ha-1) under different tillage treatments

T1 T2 T3 T4 T5 T6

SSNM D1 (29th June) 2281.75 2278.50 2289.75 2291.00 2279.75 2275.00

D2 (9
th July) 2091.75 2091.75 2091.75 2093.75 2090.75 2093.50

D3 (19th July) 2041.50 2041.50 2041.50 2041.25 2041.50 2044.75

N Omission D1 (29th June) 2262.00 2263.25 2262.75 2262.00 2255.50 2247.50

D2 (9
th July) 2064.50 2064.00 2064.75 2064.00 2064.00 2063.50

D3 (19th July) 1990.00 1990.00 1990.00 1990.00 1989.50 1989.75

yielded the highest simulated yield in both the SSNM and N 
omission experiments. This combination shows promising 
results in terms of achieving higher crop yields compared to 
other combinations of tillage treatments and sowing dates 
presented in the table.

The tillage treatments T5 and T6 in the experiment were 
similar, differing only in the tillage depth. However, despite 
this similarity, T5 and T6 produced different results in terms 
of simulated yield. Specifically, T5 resulted in a higher 
simulated yield when sown on date D1 (29th June) compared 
to T6. However, for sowing dates D2 and D3, T5 either 
produced equal or lower simulated yields compared to T6. 
This finding underlines the significance of tillage depth as 
a factor influencing the yield of soybean crops. It suggests 
that variations in tillage depth within similar tillage 

treatments can lead to differences in crop productivity. 

Kombiok and Buah (2013) determined that escalating tillage 
depth leads to enhanced root nodulation in soybean crops, 
resulting in increased nitrogen fixation and subsequently 
augmenting soybean yield.

The specific combination of tillage treatment and sowing 
date affects the overall productivity of the crops, as 
demonstrated by the variation in simulated yields observed 
in the table. The tillage treatments, including cultivator 
field, harrow tine, and chisel plough straight point with 
varying depths, resulted in increased soybean yield. These 
findings indicate that the tillage method, timing of tillage 
operations, tillage depth, and the type of implement chosen 
can significantly affect the yield of soybean crop (Busscher et 
al., 2000; Vetsch et al., 2007; Adamic and Leskovsek, 2021).

3.2.2.  Fertilizer treatment

Table 6 provides information on the simulated yields under 
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Table 6: Four-year average of simulated soybean yield under 
different fertilizer doses and sowing dates

Date of 
sowing

Simulated yield (kg ha-1) under different 
fertilizer doses

f1 f2 f3 f4 f5

D1 (29th 
June)

2361.00 2361.00 2340.75 2361.00 2329.75

D2 (9th 
July)

2165.00 2165.00 2158.50 2165.00 2159.50

D3 (19th 
July)

2103.00 2103.00 2096.00 2103.00 2086.75

different fertilizer doses for three different sowing dates. For 
sowing date D1 (29th June), the simulated yields ranged from 
2329.75 kg ha-1 to 2361.00 kg ha-1 across different fertilizer 
doses. Fertilizer doses f1, f2, and f4 yielded the highest 
simulated yield of 2361.00 kg ha-1, whereas, f3 resulted in 
a slightly lower simulated yield of 2340.75 kg ha-1 for D1 
(29th June). For sowing date D2 (9

th July), the simulated 
yields ranged from 2158.50 kg ha-1 to 2165.00 kg ha-1 
across different fertilizer doses. In case of sowing date D3 
(19thJuly), the simulated yields varied from 2086.75 kg ha-1 
to 2103.00 kg ha-1for different fertilizer doses.  All fertilizer 
doses, f1, f2, f3, f4, and f5, resulted in similar simulated yields 
for D2 and D3.

Based on these findings, the combination of sowing date 
D1 (29th June) and fertilizer doses f1, f2, and f4 consistently 
produced the highest simulated yields, reaching 2361.00 
kg ha-1. This indicates that these fertilizer doses are more 
effective in promoting crop growth and yield compared to 
the other doses. Conversely, the combination of sowing date 
D1 (29th June) and fertilizer dose f5 resulted in the lowest 
simulated yield of 2329.75 kg ha-1. This suggests that f5 may 
be less optimal for achieving higher crop yields compared 
to the other fertilizer doses. It is important to note that 
for sowing dates D2 and D3, the simulated yields across all 
fertilizer doses are relatively similar, with no clear distinction 
between the doses in terms of better or worse results.

The comparative evaluation of all five treatment conditions 
demonstrated the prominent contribution of nitrogen 
and phosphorus to soybean yield. Specifically, in the 
fertilizer treatments F1, F2, and F4, where the nitrogen 
dosage was consistent, the soybean yield remained highest 
and stable despite variations in other fertilizer doses. 
This substantiates the significant role of nitrogen in 
determining crop yield. Begum et al (2015) also reported 
the highest yield of soybean crop with nitrogen fertilizer 
followed by phosphorous. Also, the optimal fertilizer 
dose among these treatments can be selected based on 
cost-effectiveness and minimal environmental impact. 

Considering this, f1 (N:P:K:S::25:60:40:20) treatment was 
found to be better than f2 (N:P:K:S::25:80:40:20) and f4 
(N:P:K:S::25:80:50:20) due to lesser fertilizer consumption 
in f1. These findings provide valuable insights into 
optimizing fertilizer management practices for enhancing 
soybean productivity. 

3.2.3 Date of sowing 

Figure 2 provides information on the simulated yields under 
two different conditions: SSNM (Site-specific Nutrient 
Management) and N omission, for various sowing dates. 
Overall, the key findings emphasize the influence of sowing 
date and the chosen condition (SSNM or N omission) on 
the simulated yields, with different sowing dates resulting 
in varying levels of crop yield under different conditions.

The simulated yields under SSNM range between 1644.5–
2406 kg ha-1 across different sowing dates. The highest 
simulated yield of 2406 kg ha-1 was observed for the sowing 
date of 20th June under SSNM, while the lowest simulated 
yield of 1644.5 kg ha-1 was observed for the sowing date of 
20th August. The simulated yields under N omission ranged 
from 1523.5 kg ha-1 to 2410.75 kg ha-1 across different 
sowing dates. Maximum simulated yield (2410.75 kg ha-1) 
was observed for the sowing date of 10th June, whereas, the 
minimum simulated yield (1523.5 kg ha-1) was observed 
for the sowing date of 20th August. Furthermore, the table 
shows that the simulated yields decrease as the sowing 
dates progress towards the end of the season, with lower 
yields observed for the sowing dates of 20th July, 30th July, 
10th August, and 20th August. Based on these findings, 
the combination of sowing date 20th June and SSNM 
consistently produced the highest simulated yields, reaching 
2410.75 kg ha-1. This indicates that this combination 
resulted in the best outcome in terms of crop yield among 
all the options presented in the table. On the other hand, 
the combination of sowing date 20th August and condition 
N omission yielded the lowest simulated yield of 1523.5 kg 
ha-1. This suggests that this particular combination was less 
effective in promoting crop growth and yield compared to 

 

 

Figure 2: Four-year average of CROPGRO simulated yield 
under various date of sowing
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the other combinations.

The decline in soybean yield observed both before and 
after mid-June can be attributed to the absence of favorable 
conditions for crucial crop events such as pod formation, 
fruit maturity, and seed development. The inadequate pod 
formation, the production of fewer seeds per pod, and a 
reduced seed index collectively contribute to the decrease 
in yield before and after the optimum sowing time. The 
unfavorable conditions aroused by delayed sowing tends to 
shorten the soybean flowering and seed set period, thereby, 
resulting in reduced yields during this period (Egli et al., 
1987). Singh et al. (2010) observed that in the soybean 
cultivar PK416, delayed sowing led to a reduction in yield 
attributes such as pods per plant, 100-seed weight, and seed 
per pod. Similar trends of decrease in soybean yield with 
delay in date of crop sowing were obtained by Zhang and 
Gao (2010) and Kumar and Pande (2012).

3.2.4.  Irrigation 

Table 7 presents the simulated yields under different 
irrigation levels for two treatments, SSNM and N omission, 
across three different sowing dates. The simulated yields 
vary depending on the treatment, sowing date, and irrigation 
level combination. Generally, higher irrigation levels tend to 
result in higher simulated yields. The combination of SSNM 
treatment, sowing date D1 (29th June), and an irrigation level 
of 90 mm yielded the highest simulated yield of 2172.25 kg 
ha-1. This combination outperformed all others in terms of 
crop productivity. On the other hand, the combination of 
N omission treatment, sowing date D3 (19th July), and an 
irrigation level of 70 mm resulted in the lowest simulated 
yield of 1627.70 kg ha-1. 

It was observed that earlier sowing dates (such as D1 on 29th 
June) tend to result in higher simulated yields compared to 
later sowing dates (such as D3 on 19th July). This suggests 
that timely sowing plays a crucial role in achieving higher 
crop yields. In most cases, the simulated yields under the 
SSNM treatment are slightly higher than those under the 
N omission treatment. This indicates that proper nutrient 
management, as implemented in the SSNM treatment, 
can have a positive impact on crop productivity. Higher 
irrigation levels, such as 90 mm, often correspond to 
higher simulated yields compared to lower irrigation levels. 
Adequate water supply is essential for optimal crop growth 
and development. Overall, the general trend in the table 
suggests that earlier sowing dates, 

along with appropriate treatment and higher irrigation 
levels, tend to result in better simulated yields. It is 
important to note that specific combinations of factors 
may yield different results, and other factors not captured 
in the table, such as weather conditions and soil quality, 
can also influence crop yield. The study revealed that 
accurate simulation results regarding optimum irrigation 
necessitate comprehensive knowledge of soil type, crop 
requirements, and the availability of irrigation water specific 
to the selected region. Furthermore, the findings indicated 
that as irrigation increased, there was an observed upward 
trend in yield according to the DSSAT model. These results 
are consistent with the findings of Sweeney et al. (2003), 
Garcia y Garcia et al. (2010) and Sharda et al. (2019) which 
found that increase in supplemental irrigation augmented 
the soybean yield.

Table 7: Four-year average of simulated soybean yield under different irrigation levels

Treatments Date of sowing Simulated yield (kg ha-1) under different irrigation levels

40 mm 50 mm 60 mm 70 mm 80 mm 90 mm

SSNM D1 (29th June) 1756.20 1759.30 1758.00 1783.20 1757.70 2172.25

D2 (9
th July) 1676.50 1667.20 1686.00 1675.00 1677.00 1995.00

D3 (19th July) 1641.00 1636.50 1645.00 1638.00 1640.00 1883.25

N Omission D1 (29th June) 1713.50 1726.50 1726.25 1746.70 1725.70 2106.75

D2 (9
th July) 1670.70 1669.25 1676.50 1739.70 1668.50 1979.50

D3 (19th July) 1637.50 1631.75 1635.25 1627.70 1631.00 1870.70

4.   CONCLUSION

CROPGRO model performed good in predicting 
the occurrence of crop growth stages and crop yield 

indicators with RMSE values between simulated and 
observed values ranging from 3.24% and 14.22%. The 
simulation results demonstrate that the optimal management 
practices for maximizing soybean yield entail implementing 

a tillage regimen involving three ploughings and two 
harrowing operations, sowing the seeds on the 20th of June, 
fertilizing the crop with a ratio of N:P:K:S::25:60:40:20, 
and providing 90 mm of irrigation.

5.   FURTHER RESEARCH 

The study could be expanded to include more years 
of data collection to enhance the accuracy of the 

Negi et al., 2023
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simulations. Additionally, research efforts could investigate 
the impact of other agronomic practices, such as pest 
and weed management on soybean yield. By refining 
and expanding the knowledge base, future research can 
provide farmers with more precise recommendations for 
maximizing soybean production and improving agricultural 
sustainability in the Pantnagar region.
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