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Drought stresses are foremost threat to plant growth, productivity as well as sustainability towards agriculture through 
worldwide. Some of the classical breeding approaches have been attempted to develop crop performance towards stress 

without significant success and so therefore, recently genetic engineering in crop plants is recognized as an alternative strategy 
to generate drought tolerant crop plants. Various integrated biological approaches have been undertaken to overcome such 
drought hurdles in achieving the full potentiality of the plant growth and production as well as improving the drought tolerance 
in different field crops. Some approaches are commonly used to identify genes related to drought tolerance and genes to be 
identified which are involved in processes known to be critical for drought tolerance; whose expression is regulated by drought 
stress and that consists in the identification of drought tolerance determinants based on functionality. Plant researchers have 
developed several spurts of biological novel ‘Omics’ technologies viz. genomics, transcriptomics, proteomics and metabolomics 
etc to engineer plant stress tolerance. In this review, an attempt has been made to summarize the current information based 
on recent literature towards recent understanding as well as latest advancement related to the adverse effect of plant under 
drought and their adaptations or tolerance towards such abiotic stress with a focus on the identification of drought tolerance 
mechanisms by soil management practices, crop establishment and exogenous application of growth regulators by regulating an 
appropriate level of water due to osmotic adjustment and stomatal performance etc at an integrated biological level of approach.
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1.   INTRODUCTION

Water stress is an alarming threat in both developing 
and developed countries (Hanna et  al., 2016). 

Drought and salinity covers approximately 22% of the 
world’s agricultural land and such land area are already 
expanding (Ahmed and Sarwat, 2009) and cause of more 
than 50% losses in crop productivity. Drought is one of 
the major stresses in arid and semi-arid areas (Anjum 
et al., 2016, 2017a) and causes drastic changes at physio-
morphological, biochemical and molecular level. Some 
of the biological responses that occurs under drought 
tolerance in plants include at physiological level (osmotic 
adjustment, carbon fixation rate, hormonal regulation, 
osmoprotection, antioxidation and a scavenging defense 
system), morphological, biochemical (Changes and 
induction of stress proteins and enzymatic activities) 
and molecular levels (Changes in gene expression at the 
transcriptional level, intensive action of several genes). 
Enzymatic and non-enzymatic defense mechanisms have 
important role in detoxification and scavenging of the 
ROS [hydroxyl radicle (HO•), hydrogen peroxide (H2O2), 
singlet oxygen (1O

2) and super oxide anion radical (O2−) 
(Ullah et al., 2018a)] and increase drought stress tolerance 
(Choudhury et  al., 2017). Regulation of various stress 
response genes is the important factors that cope the plant 
with such abiotic stresses and increase stress tolerance 
(Hozain et al., 2012; Ullah et al., 2020). Very recently, a 
large number of genes have been reported in plants that 
are involved in drought stress tolerance. Transformation 
of gene, ScALDH21 from Syntrichia carninervis enhanced 
drought tolerance in cultivar cotton (Yang et  al., 2016) 
and genome editing technologies like, transcription 
activator-like effectors nucleases (TALENs), zinc fingers 
nucleases (ZFNs), homing meganucleases and clustered 
regularly interspaced short palindromic repeats (CRISPR) 
have enabled to produce targeted genetic modification in 
organisms of choice (Martignago et al., 2019). Drought is a 
complex mechanism that uses a broad spectrum of ‘Omics’ 
techniques viz. proteomics, metabolomics, transcriptomics, 
functional genomics and molecular genetics combined with 
advanced phenotyping techniques. 

Molecular responses are considered as a complex process 
based on the modulation of transcriptional activity of stress-
related genes. Recent advancement in various biological 
systematic approaches of plant responses to drought 
stress includes genomics, transcriptomics, metabolomics, 
proteomics and different transgenic-based approaches 
etc (Figure 1) have amplified our concept regarding plant 
signal transduction and gene regulation towards the better 
understanding of the plant responses against drought stress. 
Various plants signal transduction pathways that activate 

ion channels produce ROS and accumulate salicylic acid, 
abscisic acid and jasmonic acid etc leads to transcriptional 
changes that cause development of drought tolerant in the 
plant. 
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Figure 1: Various novel omics technique is emerged to study 
the plant responses towards drought stress

Several strategies to engineer field crops for drought stress 
tolerance have been undertaken that mainly focused on 
gene expression involving osmolyte (glycine, proline, 
mannitol, betaine, sucrose, trehalose, raffinose family 
oligosaccharides (RFOs) and fructans etc) accumulation 
and osmotic adjustment; genes encoding ROS scavenging 
enzymes [Super Oxide Dismutase (SOD), catalase, 
guaiacol peroxidase (GPX), Glutathione Reductase (GR), 
Glutathione peroxidase (GPX), Ascorbate peroxidase 
(APX) etc]; genes encoding transcription factors like DREB 
(dehydration responsive element binding protein), genes 
encoding LEA  (Late Embryogenesis protein) protein and 
genes for molecular chaperons (Heat Shock Protein (HSPs)) 
etc. The decreased rate of  transpiration, thick cuticle and 
small stomatal aperture enhance drought tolerance in plants 
(Ullah et al., 2018b) and dense root system absorbs larger 
quantity of water than thinner roots because of higher 
number of roots may contact with more water vapors present 
in the soil (Abdelraheem et al., 2019). All these strategies 
are responsible to produce a transgenic with better drought 
tolerance in plants. For increasing drought tolerance in 
plants, genetic modification is therefore utmost essential 
and required the expression of some stress-related genes to 
engineer such crops and these genes have to be identified 
that cause better drought tolerance and improve growth and 
survival of transgenic crops. 

2. 	 I M P R O V I N G  D R O U G H T  S T R E S S 
T O L E R A N C E  T H R O U G H  F U N C T I O N A L 
GENOMICS APPROACH

Recently, genetics and functional genomics (Mapping, 
sequencing and functional analysis of genome) 

approach play an imperative role in gathering massive 
knowledge in genetic improvement of drought tolerance in 
several field crops. Though such molecular mechanistic tools 
of drought tolerance have been most widely studied in well 
known model plant, Arabidopsis spp but yet more as well as 
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better understanding at molecular level for improvement of 
drought tolerance is utmost required as such information is 
underlying limited in most of the field crops. Genetics and 
genomics approach provide foundation tools for research 
on the molecular improvement of drought tolerance in field 
crops based on their phenomics/phenotyping. 

Now-a-days, genomic resources, molecular markers and 
Quantitative Trait Loci (QTL) mapping approaches 
have been successfully implicated in improving drought 
tolerance in crops. For an instance, QTL for osmotic 
potential (Tschaplinski et al., 2006) and QTL for 
Water Use Efficiency (Monclus et al., 2012) have been 
successfully identified for improving drought tolerance. 
Genomic improvement in drought tolerance is involved in 
the development of genetic tools manipulated by drought 
induced up and down regulation of gene expression that 

)

results transcription as well as accumulation of stress 
proteins. Such stress proteins functions in stress tolerance 
and different genes that encode the enzymes of osmolyte 
biosynthesis permit the synthesis of osmotic compounds in 
response to drought stress. 

On the other hand, high throughput single nucleotide 
polymorphism (SNP) and whole genome sequencing 
are involved in characterizing polymorphism (Slavov et 
al., 2012). Marker assisted selection (MAS) are used as 
a substitute for or assist in phenomics and such marker 
assisted breeding are used to improve the crop varieties 
with better drought tolerance. Gene pyramiding is another 
genetic approach for achieving desired characteristics in 
plants and in future such approach may helpful in improving 
drought tolerance also. Some of the genomic resources are 
involved in drought tolerance represented in Table 1.
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Table 1: Genomic resources involved in drought tolerance in some plants.

Crop species Genomic resources Descriptions References

Zea mays L. MaizeGDB QTL/SNP (Lawrence et al., 2004; Lawrence et al., 2005)

Zea mays L. MaizePLEXdb Transcriptome/drought (Zheng et al., 2010) http://www.plexdb.org/
plex.php?database=maize

Glycine max L. SoyBase Genome/Transcriptome http://soybase.org/(Grant et al., 2010)

Sorghum bicolor L. CSGR Genome/EST http://csgr.pgml.uga.edu/Data/SorgSig.asp

3 . I M P R O V I N G  D R O U G H T 
S T R E S S  T O L E R A N C E  T H R O U G H 
TRANSCRIPTOMICS APPROACH

Transcriptomic analysis is another most widely used 
biological approach to develop drought tolerance 

in plants. Transcriptomic analysis measures plenty 
of transcripts in parallel and such techniques include 
microarrays (e.g. At Gen Express; Kilian et al., 2007) and 
next-generation sequencing-based profiling methods (e.g. 
RNA-Seq). Transcriptome sequencing has been used to 
develop gene expression profiling in drought response 
plants. Transcriptional profiling also has been extensively 
used to identify drought tolerant genes in maize (Lu et 
al., 2010). Transcriptome analysis have been extensively 
conducted in different crops (Potato, Arabidopsis, rice, 
wheat, sugarcane) that exhibited different level of drought 
tolerance and reported that such analysis is potential 
strategies for improving drought tolerance in crops (Wong 
et al., 2006; Mohammadi et al., 2007, 2008; Mane et al., 
2008; Rabello et al., 2008; Aprile et al., 2009; Ergen et al., 
2009; Rodrigues et al., 2009). 
A number of genome wide transcriptional changes during 
drought stress have been identified and over expression of a 
number of droughts responsive down regulated transcription 
gene seems to be hopeful approach to develop drought 
tolerance in plants by transgenic tools. This approach 

concludes third generation of stress response that initiates 
with the perception of drought signals by various membrane 
receptors (GPCRs, RLKs, histidine kinases and ion 
channels etc) that generate signaling molecules like ROS 
[Superoxide anion (O2

-), hydrogen peroxide (H2O2), singlet 
oxygen (1O2), hydroxyl radical (HO•)], ABA, cytokinins, 
ethylene, inositol phosphate etc. These signaling molecules 
initiate a protein phosphorylation cascade by various kinases 
(CDPKs, CIPKs, protein kinase, protein phosphatases etc) 
and activate several transcription factors (DREB/CBF, 
AREB/ABF, bZIP, MYC/MYB, WRKY etc) through 
phosphorylation and dephosphorylation reactions. Such 
activated transcription factors may results the activation of 
stress responsive genes that includes genes coding HSPs, 
LEA (late embryogenesis abundant) proteins, LTPs 
(lipid transfer protein), ion transporters, osmolytes and 
antioxidants etc and develops drought stress tolerance 
in plants. Some expression of regulatory genes used as 
transcription factors for improving drought tolerance in 
plants are represented in Table 2.

4 .   I M P R O V I N G  D R O U G H T  S T R E S S 
T O L E R A N C E  T H R O U G H  P R O T E O M I C S 
APPROACH

Proteomics is another biological omics tool that involved 
a large number of proteins and their mechanism 
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Table 2: Over expression of regulatory genes used as transcription factors for improving drought tolerance in plants

Crop species Gene Gene action References

Rice OCPI1 Transcription factor Huang et al., 2007

Rice DREB1 or OsDREB1 Transcription factor Ito et al., 2006

Rice ABF3 Transcription factor Oh et al., 2005

Rice HvCBF4 Transcription factor Oh et al., 2007

Wheat DREB1A Transcription factor Pellegrineschi et al., 2004

Wheat and barley DREB2/DREB3 Transcription factor Morran et al., 2010

Tobacco DREB1A Transcription factor Kasuga et al., 2004
Arabidopsis DREB2A Transcription factor Sakuma et al., 2006
Arabidopsis DREB Transcription factor Kasuga et al., 1999
Arabidopsis CBF4 Transcription factor Haake et al., 2002
Arabidopsis OsDREB1A Transcription factor Dubouzet et al., 2003
Tobacco CAP2 Transcription factor Shukla et al., 2006

Glycine max L. GmDREB2 Transcription factor 
(drought and cold inducible)

Chen et al., 2007

Maize ZmDREB1A Transcription factor (drought and cold 
inducible)

Qin et al., 2004

Maize ZmDREB2A Transcription factor (drought and cold 
inducible)

Qin et al., 2007

Arabidopsis ABF3 Transcription factor Abdeen et al., 2010
Arabidopsis OsWRKY45 Transcription factor Qiu and Yu, 2009

Populus euphratica L. PeSCL7 Transcription factor (drought inducible) Ma et al., 2010

Glycine max L. GmWRKY54 Transcription factor (drought and cold 
inducible)

Zhou et al., 2008

Sorghum bicolor SbDREB2 Transcription factor (drought and cold 
inducible)

Bihani et al., 2011

towards the development of drought tolerance in plants. 
Such proteins viz. Late Embryogenesis Abundant (LEA) 
proteins, anti-freeze proteins, phosphoproteins, protective 
detoxification as well as oxidation-reduction reactions 
proteins, heat shock protein, aquaporins, chaperons and 
other stress-related proteins etc. This type of protein 
analysis directly linked to genome-sequence in functional 
genomics and in a single proteome study a large number of 
differentially expressed proteins can be identified. For an 
example, Ford et al., 2011 has been conducted first shotgun 
proteomics to gain insights into protein response to drought 
in wheat results identification of 1299 wheat proteins that 
are differentially expressed. Peng et al., 2009 has reported 
different expression of 114 drought-responsive proteins in 
bread wheat by proteomics study and in alfalfa leaf, drought 
causing damage to the photosynthetic activity was impaired 
by down-regulation of Rubisco and proteins involved in 
Rubisco assembly (Aranjuelo et al., 2011). Larrainzar et al., 
2007 has identified subsets of plant and bacterial proteins 

involved in drought stress under proteomic analysis in 
Medicago roots nodules. 

Based on proteomics profiling in rice seedlings, Shu 
et. al., 2011 and Mirzaei et al. (2012) established that 
primary drought related up-regulated protein components 
(protective detoxification and oxidation-reduction reactions 
proteins etc) involved in protein processing, anabolic 
enzymatic activities, metabolic processing, protein re-
folding and amino acid synthesis and membrane transport, 
pathogen–related metabolism, protein chaperons. 

Activities of several protective proteins are up-regulated 
along with altering physio-biochemical strategies towards 
stress when the plants are subject to drought that leads 
them first line of defense. Proteomics study revealed that 
a plant builds their amelioration either by re-watering or 
by increasing the levels of heat shock proteins (HSPs), 
molecular chaperons, aquaporins and other stress related 
proteins. Amudha and Balasububramani, 2011 and Rohila et 
al., 2002 has been reported that high molecular weight LEA 

Shil et al., 2024
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proteins may accumulate in barley and wheat respectively 
under drought and salinity stress. Over expression of a group 
3 LEA protein (HVA1) from barley exhibits tolerance to 
drought and salinity in transgenic rice and expression of a 
group of 2 LEA proteins (PMA80) gene in wheat or wheat 
LEA group 1 protein (PMA1959) gene results tolerance to 
drought and salinity. 

MYB15 an over-expressive line in Arabidopsis exhibit 
their mechanism of drought tolerance that results a higher 
sensitivity towards ABA-induced stomatal closure due to 
positive downstream effect on the synthesis of stress-tolerant 
proteins (Ding et al., 2009). Proteomic study in Brassica 
napus reported by Bazargani et al., 2011 that BnD22 (a 22 
kD stress protein) causes an increase in nitrogen recycling 
and utilization for protection of younger leaf from nitrogen 
starvation caused by drought. 

Table 3: Proteomics profiling in some rice varieties focused on the identification of polypeptides towards drought stress

Varieties Major findings References

Nipponbare 
and 
Zhonghua 8

(i) Signal transduction: actin depolymerizing factor
(ii) Stress defense: Salt-induced protein (SALT) and Super oxide dismutase (SOD)
(iii) Energy and metabolism: Oxygen-evolving complex (OEC)protein in PS II, 
RUBISCO-small and large subunits, Chloroplast ATPase, LHC-II (Light Harvesting 
complex)

Ali and Komatsu, 2006

CT9993 
and 
IR62266

(iv) Stress defense and antioxidant enzymes: GSH-dependent dehyro-ascorbate 
reductase and Super oxide dismutase (SOD)
(v) Energy and metabolism: Triose phosphate isomerase, RUBISCO-activase
(vi) Signal transduction: actin depolymerizing  factor and translation elongation factor

Salekdeh et al., 2002

Proteomic studies in different tissues and cell organelles of 
rice plants like in leave (Salekdeh et al., 2002), roots (Yan 
et al., 2005; Lee et al., 2009), anthers (Liu et al., 2011), 
cell-suspension culture (Rao et al., 2010), embryo (Fukuda 
et al., 2003), mitochondria (Chen et al., 2009) etc leads to 
the identification of several stress-induced protein and their 
physiological functions. Proteomics profiling involves a large 
network of proteins that act as a biological tool to illuminate 
various bio-molecular mechanisms towards drought stress in 
crop plants (Ashan et al., 2009). Different stress-inducible 
genes responsible for synthesis of osmoprotectants (LEA 
proteins, detoxification enzymes, anti-freeze proteins and 
chaperons etc) are directly related to protect the plants from 
drought stress. Table 3 enlisted the proteomics profiling 
in some rice varieties focused on the identification of 
polypeptides towards drought stress.  

5. 	 I M P R O V I N G  D R O U G H T  S T R E S S 
TOLERANCE THROUGH METABOLOMICS 
APPROACH

Metabolomics is another omics tools for functional 
genomics and system biology that generates large 

amounts of data for further development in the area of 
analytical science and bioinformatics. Processing, handling 
and analyzing of such data are needed for specialized 
analytical, statistical and bioinformatic tools (Shulaev, 2006). 
It is an emerging field in molecular biology that includes 
comprehensive measurements (identification, extraction 
and quantification) of key metabolites (alanine, glutamine, 
aspartate, tyrosine, isoleucine, glucose 6-phosphate, GDP-
fucose, cysteine and cystine etc) in a plant sample that are 
specific to a drought stress. Metabolome represents the 
downstream gene expression that closer to phenotype or 
genotype differences between plant species than transcript 
expression or proteins. Several analytical technologies 
are available for metabolomics study on drought stress 
includes high throughput approaches like NMR (Nuclear 
Magnetic Resonance) (Kim et al., 2010); GC-MS (Gas-
Chromatography-Mass Spectrophotometry) (Kaplan et 

al., 2004); FT-IR (Fourier transform infrared) ( Johnson 
et al., 2003); Ultra high-resolution Fourier transform-ion 
cyclotron MS (Hirai et al., 2004). 

On the contrary, glucose and proline were found regulated 
in rice plant but not in other plant species under stress 
conditions. Both glucose and proline are two metabolites 
that are well known as compatible osmolyte for osmotic 
adjustment under stress condition. Accumulation of 
Osmolytes like sucrose, mannitol, arabinitol, pinitol, 
inositol, ononitol, glycerol, sorbitol and other polyols 
(carbohydrate); malic acid, oxalic acid (Organic acid) and 
proline, glycine betaine, glutamate, aspartate, choline, 
polyamines (Putrecine, spermidine, spermine) and ABA 
etc plays an important role in the cell growth and keeps the 
ion concentrations at low levels. 

Under drought stress condition, the accumulation of proline 
is caused by inducing the biosynthesis of proline (act as 
osmoticum) and by inactivation of the degradation of 
proline. At the transcriptional level, the L-proline synthesis 
in plants from L-glutamic acid via pyrroline-S-carboxylate 
(P5C) is regulated by two enzymes viz. P5C synthetase 
(P5CS) and P5C reductase (P5CR) during dehydration and 
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rehydration. Overproduction of proline under stresses like 
drought and salinity causes tolerance towards osmotic stress 
in genetically engineered crops (Yoshiba et al., 1997) and 
production of such osmoprotectant regulated by glutamine 
synthetase (Lee et al., 2010). 

Transcription factors in ABA signaling pathway is a 
mechanistic approach of genetic improvement towards 
stress tolerance. bZIP and MYB are the two families 
that involved in ABA signaling and its gene activation. 
Yamaguchi-Shinozaki and Shinozaki, 2006 has been 
reported that constitutive expression of ABF3 or ABF4 
results drought tolerance in Arabidopsis with altered 
expression of ABA/Stress-responsive genes, for example 
rd29B, rab18, ABI1and ABI2. Ito et al., 2006 also has been 
reported that over expression of OsDREB1 or Arabidopsis 
DREB1 in rice made 96 transgenic plants more tolerance 
towards drought. 

Generally, concentration of different secondary metabolites 
increases under drought and metabolite profiling as well as 
metabolic fingerprinting of those metabolites and hormones 

Table 4: Some metabolites and hormones associated with various stresses

Metabolites/hormones Type of stress References

ROS, Malondialdehyde Biotic and abiotic 
stresses

Jaspers and Kangasjarvi, 2010; Arbona and Gómez-
Cadenas, 2008; Hossain et al., 2009

Polyamines, Abscisic acid, Jasmonic acid and 
Salicylic acid

Drought and Salinity Jaspers and Kangasjärvi, 2010; Arbona and Gómez-
Cadenas, 2008; Liu and Moriguchi, 2007; Wang et 
al., 2011; Liu et al., 2011

Proline, glycine-betaine and compatible 
osmolytes  (sucrose, mannitol, arabinitol, pinitol, 
inositol, ononitol, glycerol, sorbitol etc)

Drought, salinity and 
osmotic stresses

Ashraf and Foolad, 2007; Hmida-Sayari et al., 
2005; Umezawa, 2006

along with genomics tool may be used to identify some up 
or down regulated genes for improving drought tolerance 
in crops. Targeted analysis is one of the recently developed 
analytical approaches in metabolomics (Djoukeng et al., 
2008) that measure few metabolites either by MS (Mass 
spectrometry) or NMR (Nuclear magnetic resonance 
spactrophotometry) or Liquid chromatography (LC) or 
GC (Gas chromatography). 

Metabolite profiling is another approach that attempts 
to identify and quantify a class of chemically related 
metabolites (Seger and Sturm, 2007) and metabolic 
fingerprinting uses signals from hundreds to thousands 
metabolites for rapid sample classification via statistical 
analysis (Chatterjee et al., 2010). Hummel et al., 2010 have 
found under metabolite profiling that 30 different enzyme 
activities in Arabidopsis drought adaptation did not involved 
to carbon metabolism and organic acids mainly contributed 
to osmotic adjustment. Table 4 represents some metabolites 
and hormones associated with stresses.

6. 	 CONCLUSION

Research for improving drought tolerance has been 
underway for long time but recently an explosion of 

molecular tools, omics techniques and their integration, 
second generation and emerging third generation DNA 
sequencing technology, genomic scale investigation, 
understanding of transcriptional regulators behind co-
expressed genes and QTL identification, protein and 
metabolite profiling, high-throughput phenotyping 
platforms, improved bioinformatics resources etc that 
provides a basis for identification of more functional genes   
and novel possibilities for precise development of stress-
tolerant crop varieties at cellular level Thus, to unravel the 
drought intricacy, a proper understanding of stress signaling 
pathways are require through an integrated biomolecular 
approaches. 
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