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According to Food and Agriculture Organization of the United Nations (FAO), aquaculture has grown faster and its 
expansion aimed at meeting the increase of world fish demand, and preserving natural fish stocks. Currently, to produce 

fish in quantity and quality requires reduction of the environmental impact from aquaculture, through the improvement of 
culture systems. Disease is the major factor affecting the development and expansion in aquaculture. Losses due to disease in 
shrimp farming are high. Various approaches to minimize the impact of disease on production are possible. Another approach 
to keep the pathogen pressure low is polyculture of shrimp and finfish. This practice makes shrimp farming more sustainable 
by reducing the environmental impact and the incidence of shrimp disease. Antimicrobial peptides in the fish skin kill shrimp 
pathogens, keeping pathogen pressure of bacteria and viruses low. In polyculture, shrimps can eat tilapia faeces and unused 
fish feed, while tilapia filter phytoplankton, reducing the risk of low dissolved oxygen levels at night. In addition, shrimp 
bioturbation at the pond bottom returns nutrients to the water column, enhancing phytoplankton production and consequently 
the natural feed available for the tilapia. Biofloc technology (BFT) is one of the most applicable and promising systems for 
sustainable aquaculture development. This technology is essentially based on the recycling of nutrients via microorganisms, 
primarily (i) heterotrophic bacteria, which convert nitrogen compounds into microbial biomass, in addition to serves as a 
source of food for aquatic organisms, and (ii) chemoautotrophic bacteria, which convert ammonia to nitrite and nitrate.
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1.   INTRODUCTION

Aquaculture is one of the fastest growing sectors of 
animal protein production in the world, contributing 

to the global food security and nutrition in the twenty-
first century. Fisheries and aquaculture not only provide 
livelihood, but also offer dietary essentials for human 
consumption (Ngasotter et al., 2020). India ranks second in 
the world for aquaculture production due to its abundance 
of fisheries resources, making it the third-largest fish-
producing nation globally with 7.96% of total production. 

Aquaculture animals usually retain 20–25% of protein in 
the feed, while the rest discharged as ammonia and organic 
nitrogen in feed residues and excrement (Crab et al., 2007; 
Piedrahita, 2003), resulting in water deterioration disease 
outbreaks and heavy financial loss (Samocha et al., 2004; 
Avnimelech, 2006; Azim and Little, 2008). Another major 
constraint in the aquaculture industry is to find alternative 
primary sources of fish meal and fish oil as important 
and expensive valuable protein and oil sources in the 
aquaculture-formulated diet (Zhu et al., 2010). Therefore, 
alternative strategies should be investigated to make the 
aquaculture industry more sustainable and profitable. 
To overcome the environmental damage and increase 
sustainable aquaculture production (Avnimelech, 2009), 
one of the promising technologies that developed was an 
ecofriendly culture technology known as biofloc technology 
(Martínez-Córdova et al., 2017).

The interactions between aquatic farmed organisms in 
polyculture are mostly determined by the species’ biological 
traits and the stocking densities employed. Improvements 
in food availability and environmental conditions are major 
synergistic interactions (Milstein, 1992) in polyculture. 
Conversely, agonistic behavior and competition for food, 
space, oxygen, transmission of pathogens and other 
resources inside the growout unit are the main antagonistic 
interactions. Therefore, the secret to a successful polyculture 
is to use ecologically distinct species with complimentary 
requirements and to arrange a proper stocking density for 
each. 

Among the various shrimp species, Penaeus vannamei was 
the top species produced in 2020. Shrimp are basically 
benthic and omnivore feeding on detritus, algal films, and 
bacteria (D’Abramo and New, 2000). Penaeus vannamei has 
a consolidated and expanding producing chain, due to its 
high feed conversion ratio, disease resistance and can thrive 
in varying water conditions. This makes it an economically 
viable option for farmers as it maximizes production and 
reduces costs. Polyculture involving Penaeus vannamei helps 
to optimize resource utilization, as different species have 
different feeding habits and occupy different niches within 
the ecosystem. This can result in increased productivity, 

improved water quality, and enhanced overall sustainability 
of the aquaculture system. 

Tilapia is the widely grown fish on earth after carps, and 
the most prolific species grown in aquaculture. GIF Tilapia 
is basically pelagic (Wang and Lu, 2015) and omnivorous, 
filtering phytoplankton (Perschbacher and Lorio, 1993) and 
feeding on periphyton (Azim et al., 2004). GIF Tilapia was 
chosen because of its many desirable attributes including 
short generation interval, importance in developing 
countries, hardiness, feeding habits, resistance to diseases 
and general suitability of farming systems. Tilapia has 
proven to be ideal species for polyculture (Yakupitiyage et 
al., 1991).

Shrimp and GIF tilapia match the fundamentals described 
above, mainly because of diverse feeding habits and spatial 
distribution; they may be raised in the same pond due to 
separate environmental niches. In polyculture, shrimp can 
consume leftover fish food and waste, and fish can filter 
phytoplankton (Perschbacher and Lorio, 1993), which 
lowers the danger of low dissolved oxygen levels at night 
times (Santos and Valenti, 2002). Moreover, shrimp 
bioturbation at the pond’s bottom also recycles nutrients into 
the water column (Kimpara et al., 2011), which increase the 
phytoplankton production, a natural food for fish. 

2 .   F I S H E R I E S  A N D  A Q U A C U LT U R E 
SCENARIO

The fisheries and aquaculture sectors have been 
increasingly recognized for their essential contribution 

to global food security and nutrition in the twenty-first 
century (Verdegem et al., 2023). With 811 million people 
suffering from hunger and 3 billion people not able to 
afford healthy diets, the world is far from its proclaimed 
goal of ending hunger and malnutrition in all its forms by 
2030 (Kakaei et al., 2022). Aquaculture not only supplies 
dietary essentials for human consumption (Jayasankar, 
2018), but provide livelihoods to around 820 million people 
worldwide (Ngasotter et al., 2020). India is bestowed with 
an abundance of fisheries resources with 3.15 million ha 
of reservoirs, 2.36 million ha of ponds and tanks as well 
as 0.19 million ha of rivers and canals (Handbook, 2019; 
Datta, 2011). India is the third largest fish producing 
country, contributing 8% to the global fish production and 
ranks second in aquaculture production. The fisheries and 
aquaculture production contributes around 1% to India’s 
Gross Domestic Product (GDP) and over 5% to the 
agricultural GDP. Global aquaculture production retained 
its growth trend in 2020 amid the worldwide spread of the 
COVID-19 pandemic. The total aquaculture production 
comprises 87.5 mt of aquatic animals, 35.1 mt of algae, 700 
tonnes of shells and pearls, reaching a total of 122.6 mt in 
live weight in 2020. This represents an increase of 6.7 mt 
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from 115.9 mt in 2018. World aquaculture production of 
animal species grew by 2.7% in 2020 compared with 2019, 
an all-time low rate of annual growth in over 40 years.  In 
2020, farmed finfish reached 57.5 mt, including 49.1 mt 
from inland aquaculture and 8.3 mt from Mariculture in the 
sea and coastal aquaculture on the shore. Production of other 
farmed aquatic animal species reached 17.7 mt of molluscs 
mostly bivalves, 11.2 mt of crustaceans. Global apparent 
consumption of aquatic foods increased at an average annual 
rate of 3.0% from 1961 to 2019, a rate almost twice that of 
annual world population growth (1.6%) for the same period. 
Per capita consumption of aquatic animal foods grew by 
about 1.4% year-1, from 9.0 kg in 1961 to 20.2 kg in 2020. 

3.   PROBLEMS OF AQUACULTURE

Aquaculture is the culture of aquatic organisms. People 
have been involved in different forms of aquaculture 

for thousands of years. Today, the practice of aquaculture 
spans the globe. Many of the basic goals have not changed 
significantly in aquaculture: maximizing growth rate and 
minimizing production cost. A rapid growth rate minimizes 
the time to achieve a marketable size and decreases risk. 
The reduction of production costs makes an operation 
profitable. To accomplish this, there are number of 
strategies such as maximizing food conversion and reducing 
water and land use. Farming requires high protein diets to 
maintain productivity (Attasat et al., 2013). The downside 
is the production of a large quantity of nitrogenous and 
phosphorous waste (Yi et al., 2002). Most nutrients are 
derived from feed of which only 24–37% and 13–28% of 
nitrogen and phosphorous, respectively are converted into 
biomass, while the rest was being lost as organic nitrogen and 
ammonia in faeces and feed residue (Samocha et al., 2004; 
Lawrence et al., 2001). This leads to water deterioration, 
disease outbreaks and heavy financial loss (Azim and 
Little, 2008; Avnimelech, 2006). A high water exchange 
frequency is needed to maintain a good pond water quality, 
displacing the waste into receiving ecosystems (Attasat et 
al., 2013). The environmental impact of untreated effluents 
has raised concerns about the sustainability of farming. 
Another important constraint is the increasing pressure to 
find alternative primary sources of fish meal and fish oil as 
important and expensive valuable protein and oil sources in 
an aquaculture formulated diet (Zhu et al., 2010). 

4 .   S O L U T I O N S  T O  M I T I G A T E  T H E 
PROBLEMS OF AQUACULTURE SECTOR

Major difficulties challenged by aquaculture industry 
are effluent discharge, feed cost and water. To 

mitigate the above mentioned problems, advanced 
aquaculture technologies can be adopted. Hence to sustain 
the production and safeguard the environment, new 

technologies like biofloc (Avnimelech, 1999), polyculture 
(Jhingran, 1975), raceway technology (Felix, 2006), and 
aerated lined pond (Felix, 2012) can be applied. 

4.1.  Biofloc technology

Biofloc technology (BFT) is an innovative and sustainable 
method of fish production technique that has been 
recently received a lot of attention at global level. It entails 
the aquaculture system’s growth by its dense microbial 
communities, known as biofloc (Yu et al., 2023). Biofloc is 
known to prevent accumulation of toxic nitrogen metabolites 
(NH3 and NO2

-, etc.) by stimulating and manipulating the 
carbon/nitrogen ratio (C/N) and converting the metabolites 
into microbial flocs, even in a zero-water exchange system 
(Avnimelech et al., 1994; Mc Intosh, 2000). The microbial 
flocs are formed by heterotrophic bacteria, phytoplankton, 
zooplankton and protozoa (Avnimelech, 2007). Biofloc 
technology is an economical alternative for use in decreasing 
the commercial diets of fish, while simultaneously reducing 
potential environmental problems (Bauer et al., 2012). 
The use of biofloc technology has several advantages over 
other conventional fish farming technologies such as better 
water quality (Megahed, 2010), disease prevention, lower 
feed costs, and minimized environmental effect (Naylor et 
al., 2000). 

4.2.  Polyculture

Polyculture is a traditional fish farming practice; where 
compatible species with different feeding habits were 
stocked in a single-pond for grow out practice to effectively 
increase production (Zimmermann & New, 2000; Jhingran, 
1975). The idea of polyculture is based on the principle 
that each species stocked has its own ecological and feeding 
niche that doesn’t completely overlap with feeding niches 
of other species. In monoculture practices, the excess 
nutrients from uneaten food increase the phytoplankton 
and ammonia concentrations and change the dissolved 
oxygen dynamics (Midlen and Redding, 1998). Polyculture 
adds a subordinate species and improves the performance 
of the cultured species by enhancing water quality (Wang 
et al., 1998; Tian et al., 2001). Therefore, polyculture fits 
the principle of sustainable aquaculture; reduces the impact 
on environment, increase profitability, provides benefits 
associated with advanced ecological stability and function 
by optimizing use of available resources (Wohlfarth et al., 
1885; McKinnon et al., 2002). 

4.3.  Raceway culture system

A raceway is a channel with a continuous flow of water 
constructed for high density aquatic organism production. 
The aquaculture term “raceway” is a highly generic name 
and implies little more than a water impoundment with 
water flowing through it (Stuart et al., 2009). The Romans 
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and perhaps even earlier cultures-used complex water 
management systems to effectively create and manage both 
aquaculture raceway and static pond system (Wyban et 
al., 1991). They are usually oval tanks (or polygonal tanks 
with rounded corners as per Taiwanese shrimp industry 
of the 1980’s) of medium depth and whose diameter is a 
function of the velocity of the water flow (Shigueno, 1975). 
The water flow velocity is then a compromise between the 
flow tolerances of the aquaculture species used and the 
hydrodynamic characteristics of their waste (Costa Pierce 
and Barry, 2005). Raceway removes the solids and dissolved 
waste from the culture unit on a continuous basis, which 
reduces the discharge of effluent into the environment 
(Rakocy et al., 1997; Mc Millan et al., 2003). Raceway 
could potentially address the major challenges associated 
with the aquaculture effluent production. 

4.4.  Lined pond culture system

Earthen ponds are conventionally used for fish farming 
with some boundaries like continuous water seepage; 
complications with soil-water chemistry haven’t been 
understood with difficulties in determining the causes of 
physio chemical parameters related problems and organic 
load accretion (Weber et al., 2009). Hence, lining the 
ponds with High Density Polyethylene (HDPE) sheets has 
many advantages like reducing seepage, reducing pumping 
cost, complications due to soil-water interactions can be 
prevented and for undertaking advanced farming practices 
are more appropriate (Felix, 2006; Felix and Venkataramani, 
2007). The initial investment will be largely compensated by 
the huge advantages in terms of net profit. Lining materials 
should be long lasting and cost effective (Felix, 2011). 

5.  OVERVIEW OF BIOFLOC TECHNOLOGY

Biofloc technology (BFT) is an innovative and sustainable 
method of fish production technique that has been 

recently received a lot of attention at global level. It entails 
the aquaculture system’s growth by its dense communities, 
known as biofloc (Yu et al., 2023). The biofloc system was 
developed under the same principle that regular waste water 
treatment plants, in which the microbes grow from faeces 
of the cultured organisms being transforming it into less 
complex organic products that can be consumed by other 
organisms and return to the food  chain  (Avnimelech and 
Kochba, 2009). 

In aquaculture, the “biofloc” system acts like retention trap 
for the nutrients in the pond, and reduces maintenance 
costs because it can be used as food supplement for the 
commercial organisms being cultured, which provides an 
added value by improving the food consumption rate (Azim 
and Little, 2008). To establish the BFT, it is necessary that 
the system has a cover that prevents the accumulation of 

solid organic matter at the bottom, adding carbon source 
that stimulates the growth of heterotrophic bacteria, and to 
keep constant aeration in the water column, which will help 
the combination of physical, chemical and biological factors, 
required for the floc formation (Emerenciano et al., 2011). 

To develop the biofloc, biological polymers substances 
are required to keep the components together, creating 
a matrix that encapsulate the cells. This matrix protects 
the microorganisms from their predators, provides direct 
access to nutrients and works as substrate (De Schryver 
et al., 2008). Species biodiversity that inhabit the flocs 
depends on the microbiota found in the water body; some 
of them may function as biological control agents against 
pathogens through competitive exclusion or due to probiotic 
capabilities (Ray et al., 2010). However, to achieve the 
establishment of heterotrophic bacteria in the biofloc, it is 
necessary to adjust the carbon/nitrogen (C:N) relation in 
the water body, and is required around 15 units of carbon 
to assimilate one nitrogen unit, this is obtained by adding 
a food of low protein and one carbohydrate such as soya 
hull pellet powder in sufficient amount (Avnimelech, 1999; 
Emerenciano et al., 2012). When this rate is adequate, 
bacteria that grow inside of the microsystem starts to use 
compounds that can be toxic to the culture such as organic 
carbon, ammonia nitrogen, nitrates, nitrites, and phosphates 
as energy sources, oxidizing them so algae, fungi, and other 
bacteria and filtering organisms can use them (Avnimelech, 
1999; Avnimelech, 2007).

The non-consumed nitrogen by the organisms in the 
culture can be used to produce microbe protein, instead of 
generating toxic compounds which also helps controlling 
toxic inorganic nitrogen, residual food, and the rest of the 
phytoplankton production will also be broken down into 
simpler compounds (Avnimelech, 1999). It is very important 
to note that this process reduces the total amount of 
dissolved oxygen available for the organisms, so the existence 
of an adequate concentration of this element in the water 
becomes very important (Abarzúa et al., 1995; Avnimelech, 
1999; Mc Graw, 2003). Proliferation of bacterial colonies 
and microorganisms generates an increase in the biofloc 
biomass, this increase must have a density between 10 
and 15 ml so the system can keep functioning properly 
(Avnimelech, 1999; De Schryver et al., 2008; Emerenciano 
et al., 2011).

Nevertheless, uses of biofloc technology for sustainable 
development in aquaculture are critical because of the 
essential role of microorganisms in the establishment 
and control of ecosystem facilities, especially nutrient 
cycling, water quality control, and disease regulation in the 
culture system (Timmis et al., 2017). Although, several 
microbial biotechnologies have been applied or are still 
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in the developmental pipeline to increase the productivity 
in aquaculture by creating the ecofriendly environment 
to support the growth of other aquatic organisms. These 
organisms are key agents of pollutant removal and recycling 
(Bossier and Ekasari, 2017; Liu et al., 2019). BFT is one 
of such novel microbial biotechnologies that have been 
developed with an excellent ecofriendly technology not only 
for higher productivity but also for sustainable development 
(Emerenciano et al., 2017; Abakari et al., 2021) (Table I).

Table 1: Recent use of biofloc technology (BFT) in fish and shrimp culture

Fish/ shrimp
species cultured

Technology used Effect on fish / Shrimp Reference

Nile tilapia 
(Oreochromis niloticus)

Biochar – based BFT No remarkable negative effects of biochar 
on growth and physiological performance.

Abakari et al., 
2020

Nile tilapia 
(Oreochromis niloticus)

Jaggery – based BFT Improved growth and survival; higher 
immunity to Aeromonas hydrophila greater 
antioxidant capacity.

Elayaraja et 
al., 2020

Genetically Improved Farmed 
Tilapia (Oreochromis niloticus)

FRP tank culture with isolated 
probiotic bacteria from BFT

Enhanced growth and survival; improved 
immunological parameters

Menaga et al., 
2020

Amur minnow (Rhynchocypris 
lagowski)

BFT with differential protein Enhanced growth; boosted immune 
response and digestive enzyme activity; 
higher expression of antioxidant-related 
genes.

Yu et al., 2020

Shrimp (Litopenaeus vannamei) Wheat flour-based zero water 
exchange BFT

Affected growth performance Kim et  a l . , 
2021

Shrimp (Litopenaeus vannamei) Biofloc – based super intensive 
tank system

Better growth performance in outdoor 
conditions than in indoors

Xu et al., 2021

6.   OVERVIEW OF POLYCULTURE

Polyculture is also referred as co-culture or integrated 
aquaculture (Bunting, 2008). Polyculture utilizes 

the concept that a mixed stock of selected species, with 
complementary or minimal competing feeding habits and 
different ecological requirements, can exploit the resources 
of the different ecological niches in system effectively, 
thereby resulting a maximum production for given input 
quantities (Pitt and Nguyen, 2004; Douglass et al.,  2008). 

In addition, the density of organisms within the system may 
be a limiting factor because oxygen consumption increases 
as a function of biomass (Martinez-Cordova et al., 1997). 

Many benefits have been achieved in shrimp polyculture 
systems when using fish as subordinate species, despite the 
fact that polyculture is not common and rarely researched. 
The benefits of polyculture include the diminution of 
ecological impacts and improvement in yield and water 
quality (Muangkeow et al., 2007; Troell et al., 2009). 
Polyculture can contribute to minimizing the environmental 
impact of farm effluents, particularly those related to 
nitrogenous wastes, which are further converted into 
toxic metabolites; the main reason for this is that some 
subordinate species can fed on and assimilate most of 
the waste generated from shrimp aquaculture. A higher 
efficiency of nitrogen utilization has been observed in 
polyculture systems compared with monoculture systems 
(Zhen-xiong et al., 2001), with a consequent decrease 
in nitrogen excess, improvement in water quality and 
diminution of the environmental impact resulting from 

effluent discharges. Yokoyama et al. (2002) asserted that 
in polyculture systems, the wastes from aquaculture are 
assimilated through the food web within pond microcosm 
formed by the co-cultured organisms and natural pond 
biota. There is also evidence that the diversity of species 
within a specific environment influences a variety of 
ecosystem processes including productivity, decomposition 
and nutrient cycling (Hooper et al., 2005; Balvanera et 
al., 2006; Douglass et al., 2008). Belton and Little (2008) 
affirmed that shrimp culture has severely affected the 
ecosystem and concluded that integrated aquaculture 
practices, such as polyculture, are good alternatives for 
reducing contamination (Table 2).

7.   SPECIES INTERACTIONS

The interactions between farmed aquatic organisms 
in polyculture or co-culture depend mainly on 

the biological characteristics of the species and the 
stocking densities used. Major synergistic interactions 
are improvements in food availability and environmental 
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Table 2: Effect of polyculture on the environment and biology

Fish/ shrimp species cultured Environment Biology effect Reference
Macrobrachium rosenbergii
Oreochromis niloticus 

Reduced phytoplankton
densities and pH levels

Higher average weight, and 
more efficient feed conversion 
of shrimps (confined tilapia)

Danaher et al., 2007; Tidwell 
et al., 2010

Macrobrachium rosenbergii
Oreochromis niloticus

Reduced phytoplankton
biomass, improved the
water quality

Controlled luminous
bacteria

Tendencia et al., 2004; 
Tendencia, 2003; Tendencia 
et al., 2006

Macrobrachium rosenbergii
Oreochromis niloticus

Improved system
sustainability

Santos and Valenti, 2002

Ophicephalus striatus
Chanos chanos

Did not affect the growth
of milkfish

Cruz and Laudencia, 1980; 
Xu, 2013

Mugil liza
Litopenaeus vannamei

Modified bacterial nitrification, 
reduced total suspended solids

Enhanced growth of mullet, 
but impaired  shrimp’s growth

Holanda et al., 2020

Indian major carps, 
rohu (Labeo rohita), catla 
(Catla catla), and mrigal 
(Cirrihinus mrigala)

Maintenance of NH4 -N, 
NO2-N and NO3 -N in the 
acceptable range of water 
quality

Satisfactory growth 
performance (higher rate of 
specific growth)

Deb et al., 2020

conditions (Milstein, 1992). On the other hand, the major 
antagonistic interactions are competition for food, space, 
oxygen, and other resources within the growout unit and 
agonistic behavior. Thus, the use of ecologically different 
species that have complementary requirements and planning 
a suitable density for each are the keys for successful 
polyculture.

Shrimp and tilapia match the fundamentals described 
above mainly because of differing feeding habits and 
spatial distribution. Shrimp are benthic and omnivorous 
in production ponds, eating commercial feed, detritus, 
waste, and feces (D’Abramo and New, 2000). Tilapias are 
pelagic and omnivorous, filtering phytoplankton (Wang and 
Lu, 2015), eating periphyton (Getachew, 1993; Tadesse, 
1999; Sakr et al., 2015), and consuming commercial feeds. 
In polyculture, shrimp can eat tilapia feces and unused 
fish feed (Santos and Valenti, 2002), while tilapia filter 
phytoplankton (Perschbacher and Lorio, 1993), reducing 
the risk of low dissolved oxygen levels at night.  In addition, 
shrimp bioturbation at the pond bottom returns nutrients 
to the water column (Kimpara et al., 2011), enhancing 
phytoplankton production and consequently the natural 
feed available for the tilapia. Therefore, shrimp and tilapia 
exploit different niches in the pond environment, show 
positive synergism and low antagonistic interactions; thus, 
they can be cultivated together with success.

Generally, polyculture influences water quality in a positive 
manner and it may decrease the need to exchange water 
in ponds. The benefits of introducing tilapia into shrimp 
ponds on the physical and chemical aspects of water quality 

were noted by Rouse et al. (1987) and Alston (1989) in 
polyculture, and by Danaher et al. (2007) and Tidwell et al. 
(2000) in co-culture (stocking tilapia in cages within ponds). 
The main benefits cited are the stabilization of dissolved 
oxygen and pH. These are because the tilapia consumes 
excess algae, lowering nocturnal respiration and the excess 
of photosynthesis during the day, and the shrimp consume 
detritus, reducing respiration at the pond bottom.

Among the various shrimp species, Penaeus vannamei has 
a consolidated and expanding production chain, due to its 
adaptability, rapid growth, and adaptability to polyculture 
with fish (Hossain and Islam, 2006). Similarly, in the farmed 
fish species, Genetically Improved Farmed Tilapia (GIF 
tilapia) is emerging as an important cultivable fish after 
carps. GIF tilapia strain has better growth, meat quality 
and good market value than normal tilapia strain (Sgnaulin 
et al., 2000). Besides that, P. vannamei and GIF tilapia has 
differing feeding habits and spatial distribution which is 
highly suitable for this hybrid system. 

In shrimp farming regions, tilapia is often grown in cage or 
hapa inside shrimp ponds, or is produced in supply channels 
or head ponds. In Latin American countries such as Brazil 
and Mexico, red tilapia hybrids are now cultured in brackish 
ponds traditionally used only for shrimp farming (Alceste 
et al., 2001). In the Philippines, more than 60% of the 
shrimp farms employ tilapia–shrimp polyculture (Cruz et 
al., 2008). Farming tilapia and shrimp together, improves 
shrimp health and increases profits (Yuan et al., 2010; 
Hern’andez-Barraza et al., 2012). Shrimp production was 
generally higher in polycultures than in monocultures (Li 
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and Dong, 2002). Tilapia/shrimp polyculture is important 
in the control of the luminous bacterial disease caused by 
Vibrio harveyi (Cruz et al., 2008). Studies have shown that 
the presence of genetically improved farmed tilapia (GIFT) 
reduced the luminous bacteria population and increased 
shrimp survival (Tendencia et al., 2006). The ability of 
tilapia to control luminous bacteria has been extensively 
studied (Tendencia et al., 2004; Tendencia and Choresca, 
2006). Tilapia polyculture maintained a stable plankton 
environment, and increased shrimp survival (Cruz et 
al., 2008). Stocking performance, feeding strategies and 
productivity in shrimp/tilapia systems have been studied 
(Wang et al., 1998; Hernandez-Barraza et al., 2012).

8.   HISTORY AND STATUS OF PENAEUS 
VANNAMEI

P                                             enaeus vannamei is native to the tropical East Pacific 
from the Gulf of California, Mexico to northern Peru 

(Holthuis, 1989). It is now the most widely cultured shrimp 
in the world (Liao and Chien, 2011). It is currently raised 
in at least 27 countries, with major production operations 
occurring in the US, Mexico, Central America, tropical 
South America, China, India, and southeast Asia. Shrimp is 
one of the significant high exported commodity in world fish 
trade. The white leg shrimp (Penaeus vannamei) production 
has increased steadily over the last decade, and in 2020, a 
total of 5.8 mt were reached, making it the most-produced 
animal species in aquaculture. In fact, the culture of P. 
vannamei generates profits of over 33 billion USD year-1 
worldwide. Major producers are Asian and South American 
countries, and in 2019, imports of Penaeus shrimp to Europe 
reached 284.270 tonnes with a total value of 1.98 billion 
EUR. Among the various shrimp species, Penaeus vannamei 
has a consolidated and expanding production chain, due to 
its adaptability, rapid growth, and adaptability to polyculture 
with fish (Hossain and Islam, 2006).

9.  HISTORY AND STATUS OF GENETICALLY 
I M P R O V E D  F A R M E D  T I L A P I A  ( G I F 
TILAPIA)

The GIFT strain was developed by World Fish Centre 
(WFC; formerly known as International Centre 

for Living Aquatic Resources Management, ICLARM) 
through several generations of selection from the base 
population involving 8 different strains of Nile tilapia 
Oreochromis niloticus. GIFT program succeeded 12–17% 
average genetic gain per generation over five generations 
and cumulative increase in growth rate of 85% in O. niloticus 
(Eknath and Acosta, 1998). The Indian government 
recognizes GIF tilapia farming a key sector in aquaculture, 
particularly considering the success of other tilapia industries 
in tropical and subtropical regions around the world 

(Menaga and Fitzsimmons, 2017). Nile tilapia (Oreochromis 
niloticus) had 3.69% of share world production quantity of all 
species whereas 3.05% of share of world production value of 
all species. Capture production of tilapia and other cichlids 
are 7, 12,740 tonnes in 2012 and 8, 50,770 tonnes in 2018 
respectively. International exports of fishery commodities 
by FAO ISSCAAP of Tilapia and other cichlids in 
world exports are 40,273 tonnes in 1998 and in 2018 was 
8,11,960 tonnes with a share in total exports of 0.11% in 
1998 and 1.21% in 2018. The desirable characteristics of 
this genetically improved strain are of high yielding, better 
growth, efficient converter of organic and agricultural wastes 
into high quality protein, resistant to diseases, very hardy, 
tolerant to overcrowding conditions and adaptability to 
polyculture with shrimp (Sgnaulin et al., 2000).

10.   BIOFLO C ON WATER QUALI T Y

Being an aquatic animal, fish growth and health conditions 
are directly anchored by water quality. Elevation of 

ammonia nitrogen in water body of fish pond results in 
fish toxicity. The traditional solutions is to exchange water 
of the pond frequently or applicant sophisticated labor 
expensive technique as rotating biological contactors, 
trickling filters, bead filters and fluidized sand biofilters 
which are usually used in intensive aquaculture systems 
to remove toxic nitrogen from water in production units. 
Microbial process is the key step in waste water treatment, 
as the waste degradation and elimination could be managed. 
Activation of the ammonia assimilating bacteria by adding 
carbohydrates enhances the water quality in the pond 
(Avnimelech, 1999; Luo et al., 2014; Wang et al., 2016 
and Khanjani et al., 2016). The balance between carbon and 
nitrogen in biofloc system lead to enhance the water quality 
by minimizing the level of NH4

+, NO2 in ponds (Wang et 
al., 2016). Similar positive effect on water quality parameter 
(ammonia, nitrite and nitrate) was noticed in biofloc system 
in culture of grey mullet (Haridas et al. 2021), giant river 
shrimp (Hosain et al., 2021), Nile tilapia (Elayaraja et al., 
2020; Azim and Little, 2008), Amur carp (Ezhilarasi et al., 
2019), Pacific white shrimp (Lin and Chen, 2003; Samocha 
et al., 2004; Kuhn et al., 2010) and Zero water exchange 
system (Burford et al., 2004; Wasielesky et al., 2006; Ray 
et al., 2010; Vinatea et al., 2010).

The pH should be ranges from 6.5 to 9 depending on the 
culture species. The pH fluctuated between day and night 
due the action of photosynthesis and respiration. Growth 
and survival of the culture stock as well as the efficiency of 
the biofloc components are affected when pH is reduced 
or increased from their recommended values (<6 and >8.5) 
respectively. Emerenciano et al. (2017) reported that pH 
became acidic level could affect the nitrification process in 
biofloc system. 
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Temperature is an important parameter because it affects 
the oxygen consumption, pH, ammonia and metabolic rate 
of fish. Temperature ranges from 28 and 30°C is ideal for 
tropical fish culture but it varies depending on the cultured 
species. Wilen and Balmer (1999) reported that temperature 
should be ranges from 18 to 25°C is favor for biofloc 
development and which influences the floc characteristics 
and also microbial metabolism. 

Dissolved oxygen is a crucial parameter in biofloc systems, 
the oxygen demand will be higher, because of the interaction 
between the bacteria, algae and fish size. The recommended 
dissolved oxygen to be maintained is 6–8 mg l-1 to ensure 
proper functioning of the system. Luo et al. (2014) stated 
that increasing the C: N ratio and maintaining a high DO 
(6 mg l−1) in the culture water enabled the assimilatory 
activity of heterotrophic bacteria to convert ammonium 
into bacterial biomass in biofloc system. 

Alkalinity is the total concentration of bases in the water 
which includes carbonate, bicarbonate and hydroxide ions. 
Total alkalinity ranges from 70 to 150 mg l−1 which provide 
a well buffered environment and suitable for growth of the 
fish and pond primary productivity (Boyd et al., 2002). Azim 
and Little, (2008) reported that, total alkalinity was stable 
in normal culture system and oscillates in AMF system 
due to buffering action. Hardness is a measure of alkaline 
ions of Calcium, Magnesium in water with other ions like 
Aluminium, Zinc and Hydrogen. Acceptable range of 
hardness in aquaculture is 50–150 ppm. 

Emerson et al. (1975) state that toxicity on aquatic organisms 
has been attributed by ammonia (NH3). Emerenciano et al. 
(2017) reported that less than 0.1 ppm of NH3 suitable for 
fish culture and toxicity level mainly depends on pH of 
water in biofloc system. Hargreaves (2013) documented that 
ammonia or nitrite higher during initial stage can be reduced 
by adding carbohydrate. At primary stage, carbohydrate was 
added to lower ammonia concentration and to stimulate 
the heterotrophic bacterial population. The concentration 
of nitrites was lower and more efficient than nitrification 
in biofloc system (Perez-Fuentes et al., 2016). 

11.   FLOC PARAMETERS

Numerous studies have demonstrated that different 
microorganisms have amassed in biofloc systems, 

which play an important role in transforming the nitrogen 
compounds into functional feed for other organisms 
(Roberto et al., 2017). The created floc feed, contains 
various active compounds and probiotic strains, and helps 
in supplying energy, nutrition, and disease resistance to the 
fish (Ahmad et al., 2017). According to Crab et al. (2012), 
the applied carbon source, to promote the floc, encourages 
the proliferation of particular bacteria, protozoa, and algae, 

which affects both microbial diversity and nutritional quality 
of floc. Floc characteristics are influenced by dissolved 
oxygen, temperature, mixing intensity and carbon source 
(Crab et al., 2010). The metabolic activity of cells within 
biofloc depends on dissolved oxygen. In higher aeration, 
flocs tend to be larger and denser (Wilen and Balmer, 1999). 
Temperature is the main source of microbial metabolism. 
It may influence floc characteristics. More deflocculation 
of activated sludge flocs occurs in low temperature leading 
to decline in microbial activity within flocs (Wilen et al., 
2000). Krishna and Loosdrecht (1999) studied that higher 
water temperature leads to higher production of sludge. 
Crab (2010) reported that at optimal water temperature 
about 20–25°C, flocs are stable.

Avnimelech (2007) studied that floc volume continuously 
increased due to the addition of carbon source with intensive 
aeration and subsequently fed by culture species. The 
desirable range of floc volume, a quantitative characteristic 
of biofloc, for finfish culture was 25 to 50 ml l-1 (Hargreaves, 
2013). Krishna and Loosdrecht (1999) mentioned that the 
temperature between 20–25°C is suitable to obtain stable 
flocs with an intermediate floc volume index of about 200 ml 
g-1. Crab et al. (2010) observed that biofloc with a higher floc 
volume index are produced at lower DO-levels in the biofloc 
ponds. Better FVI provide, the aquatic organisms enough 
opportunity to filter the flocs from suspension before they 
sediment to the bottom of the ponds. The optimum level 
of floc physical and chemical characteristics and suspended 
solids (SS) and Floc volume index (FVI) should be 0.2 to 1.0 
g l-1 and >200 ml g-1 respectively (De Schryver et al., 2008). 

Mueller et al. (1967) observed that the sludge floc density 
measured after removal of the water was 1.09 g cm-3. Smith 
and Coakley (1984) reported that density of solid material 
in the flocs, with a typical constant value of 1.40 g ml-1. 
Li et al. (1986) reported that the activated sludge floc cell 
density was around 1.01 g cm-3. The porosity was increased 
in smaller flocs (<200 µm) than that of the larger flocs. Li 
et al. (1986) stated that the porosity of the activated sludge 
ranged from 82.5 to 95%. Chu and Lee (2004) reported 
that flocs are usually irregular in shape, size and have broad 
distribution with highly porous condition and observed 
around 99% of porosity has been observed. 

Hargreaves (2013) documented that BFT system should 
operate with less than 500 mg l-1 of suspended solids. 
The range between 200 to 500 mg l-1 is appropriate for 
good system and this level can control ammonia without 
excessive water respiration. TSS between 100 to 300 mg l-1 
ideal for the best feed consumption in shrimp raceway BFT 
systems. In BFT system, TSS level was gradually increased 
throughout the experiment based on the addition of suitable 
carbon source (Long et al., 2015). Ray et al. (2010) studied 
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that over accumulation of TSS concentration in the biofloc 
system causes gill clogging. Van Wyk (2006) observed that 
limited water exchange, higher organic matter input, and 
improved growth rates of heterotrophic bacteria contribute 
to an increase of TSS level in BFT systems.

12.   GROWTH PERFORMANCE 

Combining of biofloc with polyculture offers several 
advantages such as better growth characteristics 

(Hisano et al., 2019), minimizes the feed and water input, 
and effluent production (Reinoso et al., 2019; Martins et 
al., 2020). Barbosa et al. (2022) studied on the polyculture 
of fresh water shrimp with Nile tilapia using an aquaponic 
system and biofloc technology and stated that no significant 
difference were observed with respect to zootechnical 
performance. Polyculture of tilapia and river shrimp in a 
system of biofloc expressed a higher growth, which was 
reflected in a greater productivity, meeting the challenge 
of producing more in a smaller volume of water (Reinoso 
et al., 2019). Hisano et al. (2019) stated that polyculture 
of Nile tilapia and freshwater shrimp in BFT provides 
better growth performance comparing to RAS. Poli et al. 
(2019) demonstrated that feasibility of increasing yield by 
integrating L. vannamei and O. niloticus in a biofloc system. 
Polyculture of Nile tilapia (O. niloticus) and marine shrimp 
(L. vannamei) displayed better economical and performance 
indicator in comparison with monoculture (Bessa Junior et 
al., 2012). 

Polyculture technology in biofloc system improved the 
growth performance of mullet and P. vannamei with better 
utilization of residues and microbial aggregates as food 
source which met the nutritional requirements up to 50% 
(da Rocha et al., 2012). Similarly, Hoang et al. (2020) 
studied on polyculture of mullet (M. cephalus), tilapia (O. 
niloticus) with white shrimp (P. vannamei) and stated that 
shrimp-fish polyculture with a stocking density of fish 
at 10% of the initial shrimp biomass resulted in better 
growth of mullet, tilapia and white shrimp. Integration 
of shrimp and mullet in biofloc increases yield without 
compromising fish health and shrimp growth (Legarda et 
al., 2019). Jatoba et al. (2011) studied on the polyculture of 
Nile tilapia (O. niloticus) with marine shrimp (L. vannamei) 
fed with Lactobacillus plantarum resulted in increased final 
weight and feed efficiency. Co-culture of shrimp and 
tilapia resulted in better yield and physiological responses 
(Apun-Molina et al., 2015). Polyculture of Nile tilapia 
and shrimp at suitable stocking densities and appropriate 
feeding rates results in positive interactions and better 
growth performance in recirculating system (Hernández-
Barraza et al., 2013). Polyculture is more efficient with 
the combination of 2 tilapia and 5 shrimp m-2 (Simão et 
al., 2013). Hosseini Aghuzbeni et al. (2017) studied on 

the polyculture of white shrimp with mullet and stated 
that polyculture improves growth and production of white 
shrimp. Integrated system with a low tilapia-shrimp ratio 
(the ratio of 0.01 and 0.025) were effective to improve the 
growth and nutrient conversion ratio without lowering 
shrimp growth (Muangkeow et al., 2007). 

13.   DIGESTIVE ENZYME ACTIVITY 

Biofloc plays an important role in stimulating the 
activities of digestive enzymes (Moss et al., 2001) 

by promoting the breakdown of nutrients into simple 
molecules which further converted into building blocks 
(Dong et al., 2018). In general, ability of an organism to 
digest, absorb and utilize the nutrients was directly indicated 
by the digestive enzyme activity. Knowledge of digestive 
enzymes in an organism helps to determine its digestive 
capabilities, which in turn helps the selection of ingredients 
to be included in a diet. 

Xu and Pan (2012) reported the enhancement of protease 
and amylase activities of the L. vannamei grown in the 
biofloc based system and suggested that appropriate 
extracellular enzyme activities are present in biofloc. Few 
beneficial bacteria such as Bacillus sp. in the ingested 
biofloc could facilitate the modification of physiological and 
immunological status of the host, through the colonization 
in the gastrointestinal tract (Zhao et al., 2012; Xu and Pan, 
2013). Xu et al. (2013) suggested that the microbial flocs 
could exert a positive effect on the digestive enzyme activity 
of L. vannamei which can facilitate feed digestion and 
utilization. In biofloc system different microorganisms can 
produce different kind of enzyme to breakdown the protein, 
lipid and other particles, when these particles ingested in 
shrimp it will also improve the digestion of the animal. 
Anand et al. (2013) reported that the dietary inclusion of 
biofloc enhance the digestive enzyme activity with high 
growth rate in Penaeus monodon.

Wang et al. (2015) reported that protease enzyme activity 
was higher in the biofloc cultured crucian carp compared to 
the clear water system. Long et al. (2015) reported that BFT 
treatment had a stimulatory effect on the digestive enzyme 
activity. Biofloc are rich source of heterogenous microbial 
cells, bioactive compounds and thus exogenous enzymes of 
biofloc have enhanced the digestive enzyme activities of L. 
rohita (Ahmad et al., 2019, Ahmad et al., 2016; Mahanand 
et al., 2013). Najdegerami et al. (2016) stated that common 
carp fingerlings can adapt well to nutritional conditions 
and that microbial flocs stimulated the production and/
or activity of digestive enzymes, resulting in improved 
digestion of nutrients in the gut. 

14.   HEMATOLO GY

The most convenient tool for the fish culturist to assess 
clinical status is hematology. Hematological parameters 
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such as hematocrit, hemoglobin, number of erythrocytes and 
white blood cells are indicators of fish health with respect 
to nutrition and feeding. Hematological parameters act as 
physiological indicators to changing external environment 
as a result of their relationship with energetic (metabolic 
levels), respiration (Hb levels) and defense mechanisms 
(leucocytes level) and provide an integrated measure of the 
health status of an organism which manifest in changes in 
growth (Ishikawa et al., 2007). Normal ranges for various 
blood parameters in fish have been established by different 
investigators in fish physiology and pathology (Rambhaskar 
and Srinivasa Rao, 1987; Zhou et al., 2009). The analysis 
of blood indices has proven to be a valuable approach for 
analyzing the health status of farmed animals as these 
indices provide reliable information on metabolic disorders, 
deficiencies and chronic stress status before they are present 
in a clinical setting (Bahmani et al., 2001).

Bakhshi et al. (2018) studied on common carp reared 
in biofloc and reported that increase in RBCs count in 
comparison with control (without carbon source). No 
significant effect was observed on hematology parameters 
of tilapia, O. niloticus reared in biofloc (Long et al., 2015; 
Azim and Little, 2008; Mabroke, 2018; El-Husseiny et al., 
2018). Tilapia, O. niloticus reared at low density in biofloc 
has shown significant difference in WBC in comparison 
with clear water (Hwihy et al., 2021). Significantly decreased 
hematological indices (RBC, WBC, HGB and blood 
platelets) were reported by increasing stocking density of 
Nile tilapia reared in biofloc treatment (Mehrim, 2009; 
Kpundeh et al., 2013 and Zaki et al., 2020). Mansour et 
al. (2017) studied on Nile tilapia, O. niloticus reared in 
biofloc with dietary plant protein levels and stated that fish 
reared under BFT showed higher WBC counts than fish 
maintained in clear water. Mansour and Esteban, (2017), 
has reported that O. niloticus reared in biofloc culture has 
increased hemoglobin and hematocrit value.

15.   BLO OD BIO CH EMISTRY

Blood biochemistry parameters can be also used to detect 
the health of fish (De Pedro et al., 2005). Exogenous 

factors, such as management (Svobodova et al., 2008), 
diseases (Chen et al., 2005) and stress (Cnaani et al., 
2004), always induce major changes in blood composition. 
For example, significant fluctuations were detected in 
the concentrations of glucose, cholesterol and other basic 
components in response to handling and hypoxic stress 
(Skjervold et al., 2001). Cholesterol is mainly synthesized in 
liver and is an intermediate product in lipid, carbohydrate, 
and protein metabolism. The levels of glucose are considered 
to be specific indicators of sympathetic activation during 
stress conditions (Lermen et al., 2004). Basic ecological 
factors, such as feeding regime and stocking density, also 

have a direct influence on certain biochemistry parameters 
(Coz-Rakovac et al., 2005).

Studies on mullet, M. cephalus reared in biofloc has increased 
total protein and globulin levels when integrated with L. 
vannamei (Legarda et al., 2019). Similarly, increased total 
plasma and globulin were reported in mullet, M. cephalus 
reared in biofloc treatment (Kakoolaki et al., 2016; Akbary 
et al., 2018). No significant effect was observed on total 
protein of tilapia, O. niloticus reared in biofloc and control 
group (Long et al., 2015). The biochemical parameters 
of the blood serum were significantly improved in biofloc 
treatment in comparison with other treatments in O. 
niloticus (Azim and Little, 2008; Martins et al., 2017; Sayed 
and Moneeb, 2015).

16.   IMMUNE PARAMETERS

Hemolymph parameters are mostly used to monitor 
the physiological condition, nutritional quality and 

status of immune systems in crustaceans exposed to various 
stressors (Matozzo et al., 2011; Porchas Cornejo et al., 
2011). The circulating haemocyte count of crustaceans in 
terms of both increase in quantity and quality and ProPO 
activity indicated enhanced immune status in crustaceans 
and hence disease resistance (Rodriguwz and Le Moullac, 
2000; Chiu et al., 2007). Increased haemocyte count was 
reported in L. vannamei (Xu and Pan, 2013; Panigrahi et 
al., 2017, 2018 and 2019; Abbaszadeh et al., 2019; Tong et 
al., 2020), P. monodon (Kumar et al., 2017) and P. indicus 
(Panigrahi et al., 2020) in biofloc based systems. Shrimps 
evidently consume microbial floc in situ in biofloc systems 
(Crab et al., 2012), that increases THC and ProPO activity 
in P. vannamei biofloc systems (Kim et al., 2014). Similarly, 
higher PO activity was observed in L. vannamei (Ekasari et 
al., 2014), P. monodon (Kumar et al., 2017) and P. indicus 
(Panigrahi et al., 2020) when grown in biofloc systems than 
in clear water system. This improvement might be attributed 
to the consumption of large quantity of bacteria (Bacillus 
and Lactobacillus) associated with biofloc by the shrimp 
that has probably released immune-stimulatory substances 
in the intestinal tract and could significantly enhanced the 
immune status in P. vannamei juveniles in biofloc system.

17.  BACTERIAL COMMUNITY IN BIOFLOC 
SYSTEM

17.1.  Culture water

Avnimelech (1999) studied that addition of carbon source 
increase the total heterotrophic bacterial count in biofloc 
system. De Schryver et al. (2008) stated that different carbon 
sources were used for biofloc production and revealed that 
carbon source determines the composition of the floc. This 
could have an effect on the bacterial populations that are 
closely associated with the flocs.
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Caipang et al. (2015) reported that the total heterotrophic 
bacterial populations were significantly higher in the 
biofloc groups than the control due to the addition of sweet 
potato as carbon source and earlier study was carried out 
by using wheat and corn flour as carbon sources for biofloc 
production in freshwater tilapia culture. Manan et al. (2017) 
studied that Aeromonas and Pseudomonas species were 
identified as heterotrophic bacteria from their experiment 
and organic compounds were used as the source of energy 
by heterotrophic bacteria derived from the organic matter. 

Vibrio load was decreased in biofloc system through higher 
diversity of phytoplankton and algae and also can also 
compete with dominant number of heterotrophic bacteria 
(Manan et al., 2017). Emerenciano et al. (2013) discovered 
that the natural probiotic in the biofloc could fight against 
the Vibrio sp. 

Kumar et al. (2017) observed highest mean total bacterial 
count in P. monodon reared in biofloc generated from 
molasses with Bacillus being the most dominant bacterial 
group followed by Vibrio and Lactobacillus. Similarly, 
Panigrahi et al. (2019) also reported that carbohydrate 
supplementation systems significantly increasing the total 
heterotrophic bacteria (THB) count in biofloc system when 
compared with control group in P. vannamei. Recently, 
Khoa et al. (2020) found significantly high THB and Vibrio 
loads in biofloc treatment tanks reared L.  vannamei when 
compared with control. Furthermore, Sundaram et al. 
(2021) recorded significantly high THB loads in substrate 
integrated biofloc systems than clear water control system 
in P.  vannamei.

17.2.  Gut flora

Del’Duca (2015) reported that the bacterial community 
composition of gastrointestinal tract in tilapia was resembled 
the composition in water than the sediment in the pond. 
Total bacterial abundance of the intestinal tract of juvenile 
tilapia was significantly higher than that of water. In 
gastrointestinal tract of juvenile tilapia and water, the 
abundances of Lactobacillus brevis, Lactobacillus collinoides 
and Pseudomonas fluorescens were significantly higher than 
other bacterial groups and proportional value of Bacillus was 
significantly higher in fish than in water (Del’Duca, 2015). 
Chethurajupalli and Tambireddy (2021) found significantly 
higher THB, Bacillus, Lactobacillus and Vibrio count in 
biofloc treatment reared L. vannamei compared to control.

18.   CONCLUSION

Polyculture study suggests this hybrid system as 
sustainable, profitable and environmentally beneficial 

technology.
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