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The present study was conducted kharif ( July–October, 2023) at Department of Genetics and Plant Breeding, IGKV, 
Raipur, Chhatisgarh, India to determine the presence of three Bacterial leaf Blight genes (xa5, xa13 and Xa21) in rice 

by utilizing the gene specific markers in the advance breeding lines. This experiment utilized 37 advance breeding lines from 
a cross having suitable donor parent (for resistant BLB genes), and the developed lines were further utilized to determine 
the presence of resistance genes. MAS for three BLB genes was done using gene specific markers namely viz., pTA248, xa13 
prom, xa13, xa5R, Xa21, RM13, RM31 and RM122. Among these eight gene specific markers three markers pTA248 for the 
Xa21 gene, xa13 prom for the xa13 gene and xa5R marker for the xa5 gene, were shown to be polymorphic across donor and 
recurrent parents. These three markers were utilized to detect the presence of resistance genes in the population. The results 
revealed that eight plants have been present all the three genes while rest plants have been found two or single gene. 13 plants 
were found positive for two gene combination (Xa21+xa13) while 12 plants were found for gene combination (Xa21+xa5) and 
10 plants were found gene combination of (xa13+xa5). These two gene combination and 3 gene combination plants will be 
further utilize as breeding materials for development of BLB resistant cultivars.
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1.  INTRODUCT ION

Rice is the world’s principal food source and feeds more 
than half of the world’s population (Tanvi et al., 2018), 

mostly in tropical and subtropical Asia (Danaisilichaichon et 
al., 2023). It ranked second in global agriculture; it generates 
employment and revenue in rural areas while accounting for 
more than one-fifth of the calories consumed by 3 billion 
people. Rice is farmed over an area of 165.04 mha with a 
global production of 776.46 mt of paddy. Asia produces 
and consumes about 90% of the world’s rice (Fiyaz et 
al., 2022),with India contributing 22% to the global rice 
production (Annonymous 2021). With 46.3 mha under 
cultivation and an annual yield of 130.29 mt of paddy in 
2022 (Annonymous, 2023a), India leads the world in both 
area and production (Dileep Kumar et al., 2023).

Chhattisgarh has  43.48 lakh hectares, yielding 13.23 mt 
with productivity of 3045 kg ha-1 (Anonymous, 2023b). 
Rice is also the main food crop of the Chhattisgarh state, 
and most of its economy depends on rice production and 
procurement (Sao et al., 2024a).

To fulfill the demands of a growing population and rising 
incomes, the world’s supply of staple cereal grains, such as 
wheat, maize, and rice, will have to double over the next 
three decades (Sao et al., 2024b). However, the impending 
threats of human-caused climate change, which increases 
biotic and abiotic stressors on agriculture (Desari et al., 
2022), make this critical aim much more difficult to attain. 
Plant breeders and farmers are now dealing with the 
immediate consequences of climate uncertainty. 

However, a large number of diseaseslike bacterial, viral, and 
fungal origins limit the amount of rice that can be produced. 
One of the most destructive diseases that affects entire rice 
acreages is Bacterial Leaf Blight (BLB) (Fiyaz et al., 2016), 
which is caused by the gram-negative proteobacterium, 
Xanthomonas oryzae pv. Oryzae (Xoo) Dixit et al. (2020). 
Depending on the crop’s stage, cultivar susceptibility, and 
environmental factors, BLB can result in severe yield losses 
of 20-100% (Kumar et al., 2023; Das et al., 2022).

Rice disease, characterized by Kresek and leaf blight 
(Fiyaz et al., 2022), affects rice growth stages and results 
in significant yield losses and grain quality issues. The leaf 
blight phase is the most distinctive and frequently seen, 
affecting photosynthetic area (Balakrishanan et al., 2022), 
output, and incomplete grain filling (Baliyan et al., 2016; 
Sombunjitt et al., 2017).

Control of Bacterial Leaf Blight through Chemicals is 
ineffective (Yen at al., 2021) thus; the best, most affordable, 
and ecologically safe way to manage BLB is through host-
plant resistance (Sombunjitt et al., 2017). Researchers are 
working on creating resistant cultivars and finding genes 

to protect against BLB. A total of 46 bacterial leaf blight 
resistance genes have been discovered, and some of them 
have been introduced into popular high-yielding rice 
varieties (Hsu et al., 2020; Chukwu et al., 2019).

Marker-assisted selection (MAS) is a revolutionary 
approach to plant breeding that uses gene pyramiding to 
improve broad-spectrum resistance. The marker-assisted 
selection (MAS) has many advantages, such as identifying 
the true plants and producing no false positive results 
compared to the conventional methods. 

Many prominent Indian rice cultivars are experiencing issues 
owing to biotic and abiotic stressors (Chen et al., 2020). To 
achieve durable resistance, many genes must be pyramided 
together. It is therefore, important to develop long durable 
BLB resistant rice cultivars (Swathi et al., 2019). This 
study emphasizes current research on the determination of 
major resistance genes in advance breeding lines and their 
application in rice breeding programs.

2.  MATERIALS AND METHODS

The experiment was conducted from kharif ( July–
October) 2023 in the experimental field of the 

Department of Genetics and Plant Breeding, and all 
the molecular analysis work was done at the NQ LAB, 
Department of Plant Molecular Biology and Biotechnology, 
Indira Gandhi Krishi Vishwavidalaya Raipur (C.G.), India.

The present experiment consisted of 37 advance breeding 
lines (G1-G37) to study the presence of BLB resistance genes. 
The elite line R1853-105-1-82-1 had good agronomic 
characters along with good grain quality but is susceptible to 
BLB and was selected as a susceptible check, while Improved 
Samba Mahsuri (ISM) having three genes for resistance to 
BLB (xa5, xa13, and Xa21) was used as a resistance check.

2.1.  DNA extraction

DNA samples were extracted from rice plants using the 
CTAB (CetylTrimethyl Ammonium Bromide) method 
as described by Doyle and Doyle, 1990. The quantity of 
the DNA samples was determined by using a nanodrop 
(spectrometer), and the quality of the DNA was checked 
by electrophoresis analysis under 0.8% agarose gel in 1X 
TAE solution. A DNA sample with high purity was stored 
at -20˚C.

2.2.  Molecular analysis

Eight gene-specific markers were used to identify advanced 
rice breeding lines carrying the xa5, xa13, and Xa21 resistance 
genes. Of these markers, four (50%) showed polymorphism 
between susceptible and resistant checks. The pTA248, 
xa13 prom, and xa5R markers were successfully used to 
identify positive plants. The results revealed that eight plants 
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possessed all three genes, while others exhibited various 
two-gene combinations, demonstrating their potential for 
breeding BLB-resistant cultivars (Table 1).

The PCR reaction mixtures were made in accordance with 
Table 2. After five minutes of initial denatured template 
DNA at 94°C, 35 cycles of PCR amplification were 

Table 1: List of SSR markers used for studying polymorphism in rice genotypes

Sl. No. Primer Forward sequence Reverse sequence Ch.no

1. xa5R AGCTCGCCATTCAAGTTCTTGAG TGACTTGGTTCTCCAAGGCTT 5

2. RM13 TCCAACATGGCAAGAGAGAG GGTGGCATTCGATTCCAG 5

3. RM122 GAGTCGATGTAATGTCATCAGTGC GAAGGAGGTATCGCTTTGTTGGA 5

4. RM31 TCCAACATGGCAAGAGAGAG GGTGGCATTCGATTCCAG 5

5. xa13Pro GGCCATGGCTCAGTGTTTAT GAGCTCCAGCTCTCCAAATG 8

6. Xa13 GGCCATGGCTCAGTGTTTAT GAGCTCCAGCTCTCCAAATG 8

7. pT248 AGACGCGGAAGGGTGGTTCCCGGA AGACGCGGTAATCGAAGATGAAA 11

8. RM21 ACAGTATTCCGTAGGCACGG GCTCCATGAGGGTGGTAGAG 11

Table 2: PCR mix for one reaction (Volume 10 μl)

Reagent Concentration Quantity

Template DNA 40 ng μl-1 1.5 μl

PCR Master mix (Taq DNA 
polymerase, dNTPs, MgCl2, 
optimized buffer, gel loading 
dye (green), and a density 
reagent)

- 5.0 μl

Forward primer 10 μM 0.5 μl

Reverse primer 10 μM 0.5 μl

Sterile water - 2.5 μl

Total volume 10 μl

conducted using the following settings: 30 seconds of 94°C 
denaturation, 30 seconds of primer extension at 72°C, and 
30 seconds of annealing at 55°C to 58°C, depending on 
the primer. A final extension took place for seven minutes 
at 72°C. The following thermal regimes were used for 
the polymerase chain reaction (PCR) in a thermal cycler 
(Applied Boisystems and Thermo Fischer Scientific, USA) 
(Table 3).

Resolution of PCR products is most commonly achieved 
by agarose gel electrophoresis. Agarose gel concentration 
is selected based on product size. A 2.5% agarose gel was 
made in 1X TBE. After cooling the solution, 5 μl 100 ml-1 of 
ethidium bromide was added. The amplified PCR products 
were loaded onto a gel electrophoresis along with a standard 
low-range DNA ruler (100–1000 bp) to determine the 
expected size of the DNA. The DNA profile was recorded 
using a geldocumentation unit (Model Alpha Imager 1200, 
Alpha InfoTech Corp., USA) following the completion of 
the electrophoresis.

3.  RESULTS AND DISCUSSION

Table 3: Temperature profile used for PCR amplification 
using SSR primers

Profile Activity Temperature 
( ˚C )

Duration 
(min.)

Cycles

1. Initial 
denaturation

95 5 1

2. Denaturation 94 1 35

3. Annealing 55 & 58 1 35

4. Extension 72 1 35

5. Final extension 72 7 1

6. Storage 4 - 1

3.1.  Validation and parental polymorphism survey

Marker-assisted selection requires co-segregation of gene 
with molecular marker, polymorphic marker between 
parents, and confirmation of disease resistance before 
crossover programme begins. The investigation involved 
testing a donor parent in kharif 2021 for target resistance 
genes using previously published molecular markers, 
providing detailed information on linkage group and allele 
size on Table 4. The three primers, pTA248 for the Xa21 
gene, xa13 prom for the xa13 gene and xa5R marker for 
the xa5 gene, were shown to be polymorphic across donor 
and recurrent parents. These markers were all used for the 
determination of positive plants.

The primer pair Xa13 prom produced a 490 bp fragment 
in the resistant check (ISM) and a 290 bp fragment in the 
susceptible check (R1853-105-1-82-1). The primer pair 
pTA248 amplified segments of 950 bp in the resistant check 
(ISM), but only 700 bp in the susceptible check (R1853-
105-1-82-1). The primer pair xa5R produced a 150 bp 
fragment only in the resistant parent ISM and no fragment 
in the susceptible check R1853-105-1-82-1 (Figure 1).
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Table 4: Details of the molecular markers used for determination of positive plants

Sl. No. Gene Marker Chr. No Amplicon size (bp) Trait Reference

1. Xa21 pTA248 11 950 BLB resistance Huang et al. (1997)

2. xa13 Xa13 prom 8 490 BLB resistance Hajira et al., 2016

3. xa5 xa5R 5 150 BLB resistance Sundaram et al., 2014

Figure 1: Marker validation in the parents for target genes 
with gene specific markers; M=100 bp, A-R1853-105-1-82-
1, B-ISM

Figure 3: Determination of xa13 gene using gene specific 
marker xa13 prom; M=100 bp, A-Recipient line, B-Donor 
line, Arrow indicates a ‘Positive’ plant for xa13 gene, (Green 
Arrow indicates a ‘Positive’ plant for all three genes)

Figure 2: Determination of xa5 gene using gene specific 
marker xa5R; M=100 bp, A: Recipient line, B: Donor line, 
Arrow indicates a ‘Positive’ plant for xa5 gene, (Green                                   
Arrow indicates a ‘Positive’ plant for all three genes)

The study found that gene-based markers accurately 
identified gene-positive plants at all phases of MABB, 
distinguishing between resistant and susceptible lines and 
separating resistance alleles in homozygous or heterozygous 
conditions.

3.2.  Determination of the presence of xa5 gene

The xa5R marker was used to identify the xa5 resistance 
gene in the rice population. Before application, the marker 
was validated against resistant and susceptible checks. 
Amplification of the xa5R marker revealed only the resistant 
allele in the population. Parental polymorphism confirmed 
the presence of the resistant allele at 150 bp, which was 
absent in susceptible lines (Figure 2). The resistant allele 
was further confirmed in ISM at 150 bp.

The presence of the bands for xa5R markers revealed the 
resistant alleles on them, while no bands show the absence 
of the resistant allele. Only 18 plants from the 37 advanced 

populations confirmed positive for the target genes (Table 
5). These 18 plants were verified to contain the xa5 gene 
and were recognized as authentic representatives of the 
parental plants.

The similar results were reported by Sundaram et al., 
2011, and Pradhan et al., 2023; they reported presence of 
a resistant allele at 150 bp when xa5R marker was applied. 
The resistant gene was located on chromosome 5 of rice.

3.3.  Determination of the presence of xa13 gene

The xa13 prom marker has been previously used to identify 
the xa13 resistance gene in rice populations. In our study, 
PCR amplification of the xa13 prom marker revealed two 
alleles; a resistant allele of 490 bp and a susceptible allele 
of 290 bp (Figure 3). The resistant allele was validated in 
the resistant check ISM, and its size was confirmed using 
a 100-bp ladder. The resistant allele was reported on the 
chromosome 8 of the rice plant. Similar results have been 
reported by Sundaram et al., 2008 and Chukwu et al., 2019.

Out of the 37 advanced populations, only 24 plants tested 
positive for the presence of the target genes (Table 5). These 
24 plants were confirmed to carry the xa13 gene and were 
identified as true representatives of the parental plants. The 
plants containing the resistance genes remained genetically 
consistent with the parental lines, while the remaining 
plants either underwent selfing or lacked the resistance 
genes. The absence of these genes can be attributed to 
allelic segregation.

3.4.  Determination of the presence of Xa21 gene

Marker pTA248 was utilized to identify the BLB-resistant 
plants for the presence of Xa21. 950 bp was the amplified 
PCR product size for the resistant allele of ISM, while the 
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Figure 4: Determination of Xa21 gene using gene specific 
marker pTA248; M=100 bp, A-Recipient line, B-Donor 
line, Arrow indicates a ‘Positive’ plant for Xa21 gene, (Green                                   
Arrow indicates a ‘Positive’ plant for all three genes)

Table 5: Estimation of different gene combinations

S l . 
No.

Gene 
combinations

No. of 
resistant

plant

Plant with resistant gene

1. xa5 18 1, 3, 4, 6, 12, 14, 17, 18, 
19, 20, 21, 23, 24, 25, 26, 
28, 29, 31

2. xa13 25 1, 2, 6, 7, 8, 9, 13, 14, 15, 16, 
17, 20, 21, 22, 23, 24, 25, 
26, 27, 28, 29, 32, 35, 36, 37

3. Xa21 18 3, 4, 6, 13, 15, 16, 17, 18, 
21, 22, 23, 24, 25, 26, 27, 
28, 31, 34

4. Xa21+xa13 13 6, 13, 15, 16, 17, 21, 22, 23, 
24, 25, 26, 27, 28

5. Xa21+xa5 12 3, 4, 6, 17, 18, 21, 23, 24, 
25, 26, 28, 31

6. xa13+xa5 10 1, 6, 17, 21, 23, 24, 25, 26, 
28, 29

7. Xa21+xa13 
+xa5

8 6, 17, 21, 23, 24, 25, 26, 28

susceptible allele was found at 750 bp when it was observed 
under the 2.5% agarose gel electrophoresis.

Out of the 37 advanced breeding lines, 18 were identified 
as having the Xa21 gene (Table 5). These positive plants 
displayed double bands in the gel images (Figure 4), 
indicating the presence of both alleles of the Xa21 gene. In 
contrast, single bands suggested the absence of these genes. 
The positive plants were chosen for further development 
and utilization in breeding programs. Previous studies by 
Sundaram et al. (2008), Pradhan et al. (2016), Chukwu et 
al. (2019), and Dileep Kumar et al. (2023) also reported 
the presence of a resistant allele of the Xa21 gene at a size 
of 900-950 bp.

Analysis of the 37 advanced breeding lines identified eight 
plants possessing all three genes (Xa21, xa13, and xa5). 

Additionally, 13 plants were found to have the Xa21 and 
xa13 genes, while 12 plants exhibited the Xa21 and xa5 
genes, and 10 plants had the xa13 and xa5 genes (Table 
5). These plants with two or three gene combinations were 
promising candidates for further breeding efforts to develop 
cultivars resistant to bacterial leaf blight.

4.   CONCLUSION

This study investigated the presence of three bacterial leaf 
blight (BLB) resistance genes (xa5, xa13, and Xa21) 

in a population of rice plants. While eight plants possessed 
all three genes, a significant number exhibited two-gene 
combinations (Xa21+xa13, Xa21+xa5, and xa13+xa5). The 
identification of these plants with multiple resistance genes 
highlights their potential as valuable breeding resources for 
developing BLB-resistant rice cultivars.
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