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The experiment was conducted during July–November, 2022 in Raipur, Bilaspur, Kawardha, Mahasamund, and Jagdalpur 
districts of Chhattisgarh, India to identify promising rice genotypes under diverse environmental conditions. Thirty 

micronutrient-rich rice varieties, along with yield and micronutrient checks, were evaluated using RCBD with two replications 
per location. None of the candidate genotypes outperformed the standard check, Swarna, in combined mean yield performance. 
AMMI analysis revealed significant genotype, environment, and genotype-by-environment interactions (p<0.05). Environment 
5 recorded the highest mean grain yield (6560.75 kg ha-¹), followed by E4 (5783.33 kg ha-¹) and E2 (5123.67 kg ha-¹). PCA1 
and PCA2 captured 57.49% and 18.61% of genotype-environment interaction, respectively, explaining 76.10% cumulatively. 
Genotypes G28 and G29 demonstrated high mean yields and stability, suitable for commercial cultivation, while G19 showed 
high yield but lower stability, indicating potential for specific environments. Genotypes G2, G4, and G18, though low-yielding, 
exhibited greater stability, making them valuable for stability-focused breeding. “Which-won-where” analysis revealed G19 
excelling in E5, G11 performing well in E1, E2, and E3 and G28 succeeding in E4. AMMI bi-plot showed E1 as the most 
informative environment for selecting widely adapted genotypes, while E3 was highly representative but less discriminative. E4 
and E5 were discriminative but less representative. These findings highlight promising genotypes for the release of nutrient-
rich rice varieties well-adapted to Chhattisgarh’s growing areas.
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1.   INTRODUCTION

Rice serves as a staple food for 4 billion people globally, 
contributing 27% of daily calorie intake in low- and 

middle-income regions. Asia produces over 90% of the 
world’s rice and is home to 60% of the global population 
(Peng et al., 2005). India, the second-largest rice producer, 
cultivates 45.07 mha, yielding 122.27 mt with a productivity 
of 2713 kg ha-1 (Anonymous, 2021). Despite its self-
sufficiency, challenges such as population growth and 
climate change demand improvements in productivity.

India has released over 900 rice varieties, yet many are 
discontinued due to inconsistent performance across 
environments, leaving only a few stable varieties widely 
cultivated after 15–20 years (Nitiprasad et al., 2015). Yield 
is a complex trait influenced by genetic and environmental 
factors, complicating the identification of superior genotypes 
through genotype-environment interactions (GEI) (Mohan 
et al., 2021). Genetic improvement in yield potential is vital 
to meet growing demands and mitigate climate change 
impacts on rice production (Saito et al., 2021). Rice breeders 
must accelerate yield enhancements (Cobb et al., 2019) 
by understanding GEI to ensure adaptability and stability 
(Dewi et al., 2014).

Rice breeding aims to develop high-yielding, nutritionally 
rich, pest-resistant, and climate-smart cultivars (Hickey 
et al., 2019). Addressing GEI is critical for identifying 
stable, adaptable genotypes (Bocianowski et al., 2020; 
Annicchiarico, 2002; Karimizadeh et al., 2013; Yan et al., 
2007). Multi-environment trials (MET) evaluate genotype 
performance and stability across diverse conditions. 
However, the complexity of GEI poses challenges, as 
genotype performance often varies significantly across 
locations and seasons. METs simulate future growing 
environments (Crespo-Herrera et al., 2021; Cooper et al., 
2023). To minimize yield gaps between potential and on-
farm yields, selecting testing locations and understanding 
their relationship to target production environments 
(TPE) are essential. Enviromics or environtyping leverages 
environmental covariates to analyze MET groupings, 
aligning with TPE to model genotype reaction norms 
(Cooper and Messina, 2021; Costa-Neto et al., 2023; 
Callister et al., 2024).

To address these complexities, statistical methods such as 
AMMI (Additive main effects and multiplicative interaction) 
and GGE (Genotype and genotype×environment 
interaction) biplot analyses are employed. AMMI combines 
ANOVA for main effects with principal component analysis 
to capture interaction effects, aiding in the identification 
of stable genotypes across environments (Yan et al., 2022). 
Studies confirm its effectiveness using multi-location data 
(Yan and Hunt, 2001; Mohan et al., 2021).

The GGE biplot method, developed to analyze GEI data, 
builds on the AMMI approach by focusing on G+GE 
components, which account for most MET data variability 
(Kaplan et al., 2017). It visualizes patterns like “which-
won-where,” identifies mega-environments, and selects 
genotypes for specific or broad adaptability (Maksimovic et 
al., 2021; Behera et al., 2022). Applications of GGE biplots 
have been validated in various crops, including durum wheat 
(Kendal and Sener, 2015), maize (Oyekunle et al., 2017), 
barley (Solonechnyi et al., 2018), sorghum (Gasura et al., 
2016), lentils (Karimizadeh et al., 2013), sweet potato 
(Mustamu et al., 2018), and Bambara groundnut (Tena et 
al., 2019; Olanrewaju et al., 2021).

Combined AMMI and GGE analyses  provide 
comprehensive insights into GEI (Rad et al. (2013), Haider 
et al. (2017), Kesh et al. (2021). AMMI identifies stable 
genotypes, while GGE biplots visually depict genotype-
environment relationships, aiding selection of promising 
breeding materials (Kilic et al., 2020). These methods 
deliver comparable results and help identify locations with 
minimal crossover interactions relative to top-performing 
genotypes (Rubio et al., 2004; Chandrashekhar et al., 2020). 
Recent studies highlight their effectiveness in evaluating rice 
yield stability and adaptability across multiple environments 
(Singh et al., 2023).

This research was aimed to assess rice genotype performance 
in Multi-environment trials (METs), offering critical 
insights for developing high-yielding, stable, and adaptable 
rice varieties Write about the methods as AMMI and GGE 
biplot analyses

2.   MATERIALS AND METHODS 

2.1.  Description of experimental area

The experiment was carried out under five locations 
(Table 1) i.e. Raipur (E1), Bilaspur (E2), Kawardha (E3), 
Mahasamund(E4) and Jagdalpur (E5) of Chhattisgarh, India 
with 30 micronutrient rich rice varieties (Table 2) along 
with yield and micronutrient check (Swarna, Zinco Rice 
MS, MTU-1172 and MTU-1140) during kharif (July-
November, 2022) (under Multi location trial conducted by 
department of PMBB, IGKV Raipur, Chhattisgarh. 

02

Sahu et al., 2025

Table 1: List of environment and their respective location

Sl. No. Environment Location

1. E1 Raipur

2. E2 Bilaspur

3. E3 Kawardha

4. E4 Mahasamund

5. E5 Jagdalpur
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Table 2: Mean performances of 30 nutri rich rice genotypes evaluated across five testing environments

Sl. No. Genotype 
no.

Genotype name E1 E2  E3 E4 E5 Mean

1. G1 R-RHZ-MI-95 3826.30 3900.00 4106.00 4625.00 5227.27 4336.91

2. G2 R-RHZ-CC-162 2100.80 3300.00 4144.00 3958.30 5227.27 3746.07

3. G3 R-RHZ-CC-164 3988.80 3950.00 5232.00 6250.00 6044.03 5092.97

4. G4 R-RHZ-CB-184 2053.20 3330.00 4670.00 3916.70 6676.14 4129.21

5. G5 R-RGY-SM-128 3221.30 3900.00 5754.00 6750.00 7279.83 5381.03

6. G6 R-RGM-AS-45 5042.00 6100.00 4942.00 6583.30 7698.86 6073.23

7. G7 R-RHZ-RH-126 3781.50 4950.00 4164.00 5583.30 6775.57 5050.87

8. G8 R-RHZ-SH-187 5462.20 5500.00 4254.00 5291.70 5901.99 5281.98

9. G9 R-RHP-IC-151 4902.00 6600.00 5432.00 6875.00 7265.63 6214.93

10. G10 R-RGY-SA-189 6582.60 5300.00 4722.00 6250.00 7805.40 6132.00

11. G11 R-RGY-SI-190 6162.50 6570.00 5268.00 6916.70 8948.86 6773.21

12. G12 R-RGY-SM-112 5602.20 5100.00 5070.00 6500.00 6974.43 5849.33

13. G13 RK-211-X Chandrahasni-4 2661.00 5750.00 4696.00 6791.70 7694.60 5518.66

14. G14 RK-211-X Chandrahasini-155 3803.90 4150.00 5442.00 5166.70 7826.70 5277.86

15. G15 RK-211 X Chandrahasini 208 2381.00 3700.00 4752.00 6333.30 5696.02 4572.46

16. G16 RK-211 X Chandrahasini-210 4271.70 4950.00 4590.00 4666.70 7990.06 5293.69

17. G17 R-RHZ-IR-201 5367.00 5300.00 4942.00 5125.00 7393.47 5625.49

18. G18 R-RHZ-SK-129 2501.40 3700.00 3930.00 4250.00 5447.44 3965.77

19. G19 R-RKY-IS-191 6677.90 6370.00 5234.00 4000.00 7720.17 6000.41

20. G20 R-RHZ-KH-127 4481.80 6230.00 4956.00 4541.70 3645.00 4770.90

21. G21 R-RHZ-SH-195 4131.70 5670.00 5038.00 4666.70 7393.47 5379.97

22. G22 R-RHZ-AS-40 4972.00 5700.00 5094.00 6083.30 7578.13 5885.49

23. G23 R-RGY-SD-194 4902.00 6430.00 4845.00 6458.30 6264.20 5779.90

24. G24 R-RHY-SH-193 4201.70 5780.00 4616.00 6416.70 5234.38 5249.76

25. G25 R-RHZ-SD-94 3781.50 6060.00 4284.00 7333.30 7017.05 5695.17

26. G26 R-RHP-IR-142 2100.80 4900.00 4386.00 5750.00 3416.19 4110.60

27. G27 ZINCO RICE -MS 4481.80 4500.00 4092.00 5250.00 5994.32 4863.62

28. G28 SWARNA 6162.50 6100.00 5888.00 7250.00 6761.36 6432.37

29. G29 MTU-1172 6911.80 5200.00 5376.00 7083.30 7137.78 6341.78

30. G30 MTU -1140 3910.40 4720.00 4432.00 6833.30 4786.93 4936.53

Mean 4347.58 5123.67 4811.70 5783.33 6560.75 5325.41

The experiment was conducted in Randomized Block 
Design (RBD) with Two replications having a plot size 
of 5 m2 in each replication each environment. All the 
experiments of five different locations were carried out at 
irrigated ecosystem with transplanted nursery establishment. 
Standard agronomic practices and appropriate control 
measures for weeds, insect pests and diseases were followed. 
Fertilizer was applied at the recommended dose of 100:60:40 
(N: P: K) at each experimental location. Yield data was 

recorded at physiological maturity and plot data harvested 
was converted to kg ha-1 using the plot size as factor. 

2.1.  Statistical analysis 

Multivariate analysis was carried out in using R (4.0.5) 
software packages and R studio (R Core Team 2019) . 
Multi-trait multi-environment analysis including GGE 
bi-plot analysis for grain yield plant-1 (GYP) was analyzed 
using METAN packages (Olivoto and Lúcio, 2020). The 



© 2024 PP House

04

ggplot 2 packages were used to create the GGE bi-plot 
display (Wickham et al., 2016).

We used statistical analysis (ANOVA) to study differences 
in yield among genotypes and locations. We also examined 
combinations like genotype by location, genotype by season 
(genotype by environment). This analysis was performed 
using the R-package for multivariate analysis. To understand 
the interaction between genotype and environment (G×E), 
we conducted a visual multivariate stability analysis using 
GGE biplot and AMMI in R studio, which is a simplified 
version of R statistical software developed by the R Core 
Team. For GGE biplots, we utilized the GUI package 
in R studio, and for AMMI, we employed the Agricolae 
package, which incorporates two important concepts the 
biplot concepts (Gabriel et al. (1971), (Yan et al. (2007) as 
well as the GGE concept (Yan et al. (2000).

2.2.  AMMI model 

AMMI model analyzes how genotypes and environments 
interact in agriculture. It has additive parts for direct effects 
and a multiplicative component showing how genotypes 
behave in different environments. AMMI model, an 
advanced form of mean regression, effectively understands 
how genotypes and environments interact. Developed by 
(Gollob (1968) (Mandel (1971) and (Gabriel (1978). It 
includes ANOVA, PCA, and regression. This equation 
evaluates crop impacts, aiming for a simple grasp of 
combined effects on yield and productivity in different 
situations. 

2.3.  Model’s equation 

Yij=μ+gi+ej+nΣk=nλkαikγjk+εij
Where

Yij: Represents the mean yield of genotype (i) in 
Environment (j) 

μ: Signifies the overall mean yield across all genotypes and 
environments 

gi: Denotes the effect of the (i) genotype 

ej: Represents the effect of the j environment 

nΣk=nλkαikγjk+εij: Capture the multiplicative interaction 
effect 

λk: is a singular value αik is a singular value of the (i) 
genotype and γjk is the singular value of the (j) environment 
and εij Represents the experimental error

3.   RESULTS AND DISCUSSION 

Combined analysis of variance was performed to 
describe the main effect and quantify the interactions 

among and within the sources of variation (Table 3). The 
mean square of environment (location) and genotype by 
environment showed a significant difference (p≥0.01) for 

Table 3: Additive main effect and multiplicative interaction 
(AMMI) analysis of variance for grain yield

Source Df Sum Sq Mean Sq p value

ENV 4 193044249 48261062.2** 0.0000311

REP(ENV) 5 1864662 372932.4** 0.7612785

GEN 29 167428763 5773405.6** 0.0000000

GEN:ENV 116 163627528 1410582.1** 0.0000605

PC1 32 69470306 2170947.1** 0.0000000

PC2 30 53106108 1770203.6** 0.0002000

Residuals 145 104108017 717986.3 -

Total 415 793700746 1912531.9 -

yield. Environment and genotype by environment had 
highly significant differences that might be attributed to 
changes in the environment and genetic makeup which 
differed from oneenvironment to next. The partitioning of 
the GXE interactionpercentage computed from total sum 
of the square which described the percentage of variation 
for all factors. ANOVA table presented an analysis of 
various sources contributing to the variation observed in the 
dataset. All factors including Environmental (E), Genotype 
(G) and Genotype: Environment (GXE) were statistically 
significant.

The presence of GXE Interaction (GEI) was clearly 
demonstrated by AMMI model and the interaction 
was portioned among the first two interaction principal 
component axis (IPCA), while the cumulative variance 
was 100% for PCA-I and PCA-V thereby, demonstrating 
that genotypes might be selected for adaptation to specific 
environments. These results were in harmony with the 
findings of Aina et al. (2009) and Xu Fei-fei et al. (2014) 
in G×E interactions effects. The environmental variance 
was also found to be significant which indicated that 
the environments under study were different from each 
other. The model was additive and the results of AMMI 
analysis were represented in the form of graphs called bi-
plots (Gauch and Zobel (1996). Further Gauch (1988) 
recommended that the most accurate model for AMMI 
could be predicted by using first two principal component 
analysis. Admassu et al. (2008), in accordance with Zobel 
et al. (1988), proposed that two interaction principal 
component axes for the AMMI model were sufficient for 
a predictive model. Thus, the interaction of 30 Nutri rich 
rice lines with five environments was predicted by the first 
two components.

The cumulative variance explained by first two principal 
components was 76.1%, supporting the selection of 
genotypes for specific environments, consistent with the 
studies by Aina et al. (2009) and Xu Fei-fei et al. (2014). 
The significant environmental variance confirmed that the 

Sahu et al., 2025
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environments under study were distinct. The AMMI model 
results were additive and visually represented through bi-
plots (Gauch and Zobel, 1996). Gauch (1988) suggested 
that the most accurate AMMI model predictions could be 
achieved using the first two principal components. Admassu 
et al. (2008) and Zobel et al. (1988) concurred that two 
interaction principal component axes were sufficient for 
predictive modeling. Accordingly, the interaction of 30 rice 
genotypes across five environments was modeled using these 
first two components (Sivapalan et al. (2000).

Stable genotypes were identified using graphical 
representations (GGE bi-plots), which combined genotype 
and G×E components to show interaction patterns across 
environments, highlighting which variety performed best 
in which environment. Vijay Kumar et al. (2001) explained 
that these bi-plots aided in visualizing GE interaction 
patterns and helped to identify genotypes or environments 
with low, medium, or high interaction effects. By analyzing 
G × E interaction, breeders could identify stable genotypes 
across environments and develop more adaptable and high-
yielding varieties .

3.1. Combined GGE biplot analysis: discriminativeness vs. 
Representativeness of test environments

The GGE biplot is a crucial tool for identifying ideal 
test environments, assessing their discriminativeness 
and representativeness, and selecting superior genotypes 
(Oladosu et al. (2017). In this analysis, the biplot explained 
76% of the total variation in the environment-centered G×E 
interaction (Figure 1). The Average Environment Axis 
(AEA), a line that passed through the average environment 
and the biplot origin, represented the coordination of all 
test environments. The ideal test environment should be 
both highly informative and closely representative of the 
target environment. As shown in Figure 2, the “ideal test 
environment” was positioned at the center of the concentric 
circles. It represented the peak of the AEA in the positive 
direction, indicating the most representative point. Its 
distance from the biplot origin equaled the length of the 
longest vector among all environments, symbolizing the 
maximum level of informativeness. Environment E3 formed 
the smallest angle with the AEA, followed by E1 and E2, 
making E3 the most representative environment, while E4 
and E5 were the least representative.

The concentric circles in the biplot, proportional to the 
representativeness of the environments, indicated the 
discriminating ability of each environment. E1 was both a 
representative and discriminative environment, making it 
ideal for selecting broadly adapted genotypes. On the other 
hand, E4 and E5 were discriminative but not representative, 
making them useful for selecting genotypes specifically 
adapted to certain conditions or for eliminating unstable 

Figure 1: The GGE biplot ‘Descriminitiveness vs. 
representativeness’ for genotype comparison with ideal 
genotype showed the G+G×E interaction effect of 30 Nutri 
rich rice genotypes under five locations for plant yield

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

Figure 2:The GGE biplot ‘Environment ranking’ pattern for 
environment comparison with the ideal environment showed 
the G+G×E interaction effect of 30 Nutri rich rice genotypes 
under five locations for plant yield

genotypes. E3, with its short vector length, was non-
discriminative and therefore less useful, as it provided little 
information for distinguishing genotypes. 

E1, having the longest environment vector, was the most 
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informative, while E3 was the least (Figure 3). The cosine 
of the angle between environment vectors reflected the 
correlation between them; E1 and E3, with the smallest 
angle, showed the closest association, followed by E2–E3 
and E1–E2, indicating similar results and low crossover 
G×E interactions. This close association suggested that 
the same information could be obtained from fewer 
test environments, potentially reducing testing costs by 
eliminating redundant locations. In contrast, E4 and E5 
form a right angle, indicating no correlation between 
these environments. This insight could guide the optimal 
allocation of limited resources during multi-location trials

 

 

 

 

 

  

  

Figure 3: The environment-vector view of the GGE biplot 
showed similarities among test environments under five 
locations for plant yield

3.2.  GGE biplot analysis: ‘mean vs. stability’ and ideal genotype 
evaluation

Biplot analysis is an essential statistical tool for assessing 
genotypic performance across various environments. 
The Average Environment Coordination (AEC) ranks 
genotypes based on their mean performance. The AEC 
was represented by a vertical line in the biplot, where 
genotypes positioned closer to this line and in the direction 
of the arrow indicated superior average performance across 
environments. The AEC Ordinate, a horizontal line, 
evaluated genotype stability, with those closer to it showing 
less variability in performance under different environmental 
conditions (Yan and Rajcan, 2002). Genotypes farther from 
the AEC exhibited greater variability and lower stability. 

In this analysis, Figure 4 represented mean v/s stability 
pattern of GGE biplot, genotype G11 showed the highest 

 

 

 

  

Figure 4:‘Mean vs. stability’ pattern of GGE biplot illustrating 
interaction effect of 30 Nutri rich rice genotypes under five 
locations for plant yield

mean yield (MY), followed by G28, G10 and G29. In contrast, 
G2 had the lowest MY, followed by G4 and G18. Genotypes 
G19 and G26, positioned furthest from the AEC, were the 
most unstable, exhibiting the greatest variation, while 
G28, G29, and G18 were the most stable genotypes. These 
findings were consistent with previous studies (Oladosu et 
al. (2017), Hashim et al. (2021), Sabri et al. (2020), Mahant 
et al. (2024).

3.3.  Genotype ranking: identification of ideal genotypes

The genotype ranking biplot (Figure 5) is a valuable tool 
for identifying the best-performing genotypes. Genotypes 
positioned close to the ideal genotype were considered 
promising. In this analysis, G29, G11 and G28 were identified 
as top performers due to their proximity to the arrowhead in 
the circle representing plant yield (Figure 3). Ideal genotypes 
were typically located within the innermost circle, near the 
arrowhead at the center of the circular ring. If no genotype 
fell within this inner circle, those closest to it were deemed 
ideal (Oladosu et al. (2017) and Mahant et al. (2024).

An ideal genotype should exhibit both high mean 
performance and stability (Yan and Tinker (2006). This 
was often represented by a point at the arrow’s head on 
the AEC abscissa (horizontal axis). (Oladosu et al. (2017) 
reported that none of the genotype falls inside the inner 
circle. Therefore genotype markers next to the ideal inner 
circle are considered to identify promising genotype. 
Mahant et al. (2024) also finds that Genotypes close to the 
ideal genotype are promising. 

Sahu et al., 2025
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The testing environments were partitioned into mega-
environments (ME), with five testing environments 
distributed across three sectors in the biplot for yield. E1, E2, 
and E3 fell within the same sector, while E4 and E5 occupied 
separate sectors. Sectors without any environment markers 
did not represent distinct mega-environments and could be 
merged with the nearest MEs. Genotype G19 was the top 
performer in E5, G11 was the winner across E1, E2, and E3, 
while G28 excelled in E4. This analysis demonstrated the 
usefulness of GGE biplot analysis for identifying stable and 
superior genotypes. Genotypes placed in sectors without 
environment markers were considered to perform poorly 
across all environments.

A genotype positioned at the vertex of a polygon section 
without an environment marker indicates poor performance 
across environments. Equality lines between G19 and G11 
showed that G19 was superior in E5, while G11 excelled in 
other environments. Similarly, equality lines between G11 
and G28 indicated that G28 performed better in E4, while G11 
outperformed in the remaining environments. Genotypes 
situated within the polygon were less stable than those at 
the vertices (Yan and Tinker (2006). Similar results had 
been reported by Islam et al. (2014), Krishnamurthy et al. 
(2021) and Mahant et al. (2024).

Several authors had employed AMMI to analyze multi-
environment trials, distinguishing the effects of genotype 
and environment and assessing GEI in a reduced 
dimensional space with minimal error. Comparable findings 

Figure 5: The GGE biplot ‘genotypes ranking’ pattern for 
genotype comparison with ideal genotype showing G+G×E 
interaction effect of 30 Nutri rich rice genotypes, under five 
locations for plant yield

07

 

  

3.4.  Biplot analysis for interpreting multivariate data in multi-
environment trials

In this study, thirty rice genotypes tested across five locations 
produced a biplot divided into heptagon sections (Figure 6) 
for yield. Genotypes G4, G2, G26, G30, G28, G11, and G19 were 
located at the vertices of the polygon, indicating that these 
genotypes performed either best or worst in one or more 
environments. Multi-environment trials (MET) are used 
to examine genotype-environment (G×E) interactions in 
crop production (Oladosu et al. (2017). In MET, the main 
sources of variation are Genotype (G) and G×E interactions 
(Yan et al. (2000). The biplot technique plays a key role in 
interpreting MET data by revealing the “which-won-where” 
pattern of G×E interactions, assessing genotype stability 
and overall performance across different environments, 
and evaluating the representativeness and discriminating 
ability of test environments. A biplot graphically displays 
genotypes and environments on a two-dimensional scale 
based on their PC1 and PC2 scores, with high PC1 
values indicating better yield potential and low PC2 values 
suggesting greater stability. Genotypes associated with 
the vertices of the encompassing polygon in the biplot, 
located far from the center, represented those best suited 
for specific environments, highlighting promising genotypes 
for future cultivation. The “which-won-where” analysis 
addresses genotype-by-environment interaction (GEI), 
mega-environment differentiation, and specific genotype 
adaptation graphically.

Figure 6: ‘Which-Won-Where’ polygon view of the GGE 
scatter biplot for yield in 2022 showing Nutri rich rice 
genotypes with best performance in each environment
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were previously reported by Oikeh et al. (2004), Velu et al. 
(2012), Bishaw and Van Gastel (2009), and Suwarto and 
Nasrullah (2011), Bishwas et al. (2021), Dang et al. (2024). 
GGE biplots had proven valuable for selecting lines suitable 
for target environments and had been applied in multi-
location trials and coordinated variety testing programs. 
Dwivedi et al. (2020) also identified suitable location for 
grain yield plant-1.

4.   CONCLUSION 

Rice genotypes across environments to identify top-
performing varieties. Multi-environment trials (MET) 

assessed the adaptability and stability, grouping genotypes 
into stable, high-yielding (G28, G29), high-yield but low-
stability (G19), and high-stability but low-yield (G2, G4, 
G18) categories. MET and multi-location trials provided the 
insights into genotype performance, aiding the development 
of adaptable, high-yielding varieties. Notably, G28, G29, 
and G11 demonstrated consistent performance, making 
them promising candidates for commercial cultivation in 
Chhattisgarh.
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