

Integrated Management of *Corynespora cassiicola* (Berk. and Curt.) Wei. Causal Agent of Target Spot Disease in Cotton

B. M. V. S. Prasad¹, S. L. Bhattiprolu², V. M. Kumar¹, K. Jayalalitha² and D. V. S. R. Kumar³

¹Dept. of Plant Pathology, ²Dept. of Crop Physiology, ³Dept. of Entomology, Agricultural College, Bapatla, Andhra Pradesh (522 101), India

²Dept. of Plant Pathology, All India Coordinated Research Programme on Cotton, Regional Agricultural Research Station, Acharya N.G. Ranga Agricultural University, Guntur, Andhra Pradesh (522 034), India

 Open Access

Corresponding b.sreelakshmi@angrau.ac.in

 0000-0002-3151-9724

ABSTRACT

Laboratory experiments were conducted during *kharif* (July 2019–February 2020 and July 2020–February 2021) in the Department of Plant Pathology, Agricultural College, Bapatla and field experiments with selected treatments were carried out at Regional Agricultural Research Station (RARS), Lam, Guntur, Andhra Pradesh to develop an integrated management strategy against *Corynespora* leaf spot of cotton. Evaluation of fungicides, biocontrol agents, salicylic acid, potash and phosphate salts revealed that carbendazim, carbendazim+mancozeb and propiconazole at 250, 500, 750 and 1000 ppm and salicylic acid at 5.0 and 6.5mM completely inhibited the mycelial growth of cotton isolate of *Corynespora cassiicola*. Both phosphorous acid (79.98%) and ammonium dihydrogen phosphate (48.72%) showed reduction of mycelial radial growth in poisoned food technique. *Trichoderma* isolate T 18001 grew fast and exhibited deformation, demelanization, protoplast aggregation and finally lysis of mycelia in dual cultures. *Pseudomonas fluorescens* (PF1), *Bacillus subtilis* BS2, Actinomycetes (ACT2) were found to be effective with 39.23, 40.26 and 41.03% inhibition, respectively, as against control (3.90 cm) and induced shrinkage of *Corynespora* mycelia, reduction of interseptal length, demelanization in mycelia, excessive production of chlamydospores and finally, hyphal lysis at the zone of interaction. Propiconazole at 0.1% resulted in the lowest per cent disease index (12.4), highest yield (2931.7 kg ha⁻¹) and BC ratio of 1.46 followed by carbendazim+mancozeb at 0.1% (13.9 PDI, 2851.1 kg ha⁻¹ and 1.42) and were significantly superior to other treatments as against control (27.3 PDI, 2265.6 kg ha⁻¹ and 1.13), respectively.

KEYWORDS: Biocontrol agents, *Corynespora cassiicola*, cotton, fungicides

Citation (VANCOUVER): Prasad et al., Integrated Management of *Corynespora cassiicola* (Berk. and Curt.) Wei. Causal Agent of Target Spot Disease in Cotton. *International Journal of Bio-resource and Stress Management*, 2025; 16(9), 01-13. [HTTPS://DOI.ORG/10.23910/1.2025.6414](https://doi.org/10.23910/1.2025.6414).

Copyright: © 2025 Prasad et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, that permits unrestricted use, distribution and reproduction in any medium after the author(s) and source are credited.

Data Availability Statement: Legal restrictions are imposed on the public sharing of raw data. However, authors have full right to transfer or share the data in raw form upon request subject to either meeting the conditions of the original consents and the original research study. Further, access of data needs to meet whether the user complies with the ethical and legal obligations as data controllers to allow for secondary use of the data outside of the original study.

Conflict of interests: The authors have declared that no conflict of interest exists.

1. INTRODUCTION

Cotton (*Gossypium* spp.) is the most important commercial crops of the world, which belongs to the botanical family “Malvaceae”. Cotton is referred to as “King of Fibres” and also known as “White Gold”. As the largest source of natural fibre, cotton is used as raw material in textile, pulp and paper industries and oil extracted from cotton seed is used in food, chemicals, cosmetics, pharmaceuticals etc. Cotton seed cake is used as cattle feed (Proto et al., 2000). The cotton production in India during 2024–25 was estimated to be 299.26 lakh bales of 170 kg from 113.6 1 ha with a productivity of 448 kg lint ha⁻¹ by the Directorate of Economics and Statistics, Ministry of Agriculture and Farmers Welfare, New Delhi. The area under cotton during the current year in the country decreased by 10.46% and cotton production decreased by 7.98% compared to last year. Andhra Pradesh stood 8th both in cultivated area (4.53 1 ha) and production (9.41 1 bales) and 9th in productivity with 353 kg lint ha⁻¹ in India (Anonymous, 2025). In India, cotton is cultivated under rainfed conditions and the cultivation is highly fluctuating due to biotic as well as abiotic stresses and competition from other crops in recent years. Biotic stress on cotton caused by pests and diseases contribute to 10–30% of annual yield loss worldwide (Hagan et al., 2015; Bowen et al., 2018). In India, foliar diseases (fungal, bacterial and viral) have been estimated to cause yield losses up to 20 to 30% (Mayee and Mukewar, 2007). Among all fungal foliar diseases, *Corynespora* leaf spot caused by *Corynespora cassiicola* has been increasing its prevalence and severity in cotton growing areas of South-Central United States, Central India and South India (Butler et al., 2016; Salunkhe et al., 2019 and Siva Prasad et al., 2022). *Corynespora* leaf spot has been observed in Andhra Pradesh since 2017 which attained major status. On infected cotton leaves initially, minute pinhead size light orange to brick red minute spots appeared that gradually enlarged and became circular to oval or irregular concentric spots with tan to light brown centre with yellow halo around the margin. These spots enlarged and concentric zonations were formed resulting in target board symptom. The disease resulted in premature defoliation during boll formation and boll maturation stage (Bowen et al., 2018). *Corynespora* target spot caused 224–448 kg ha⁻¹ equivalent to 5% to 40% loss of lint in susceptible cotton cultivars (Conner et al., 2013; Hagan et al., 2015). Fungal foliar diseases including *Corynespora* leaf spot could cause losses to the tune of 16.14% in Jaadoo BG II, 20.34% in RCH 2 BG II and 26.28% in L 1060 (Roshan et al., 2022a). Carbendazim at 0.1%, hexaconazole at 0.2%, fluxapyroxad+pyraclostrobin at 0.06% and metiram+pyraclostrobin at 0.3% induced 97.50 to 100% inhibition of *C. cassiicola* (Mahesh et al., 2021; Mounika et al., 2024). Roshan Baba et al. (2022c) observed

that propiconazole at 0.1% and zineb+hexaconazole at 0.2% caused 85.90% and 85.57% reduction in Per cent disease index (PDI) of *Corynespora* leaf spot followed by propineb at 0.3% (80.41%). Efficacy of potassium, sodium and phosphate salts was observed against soil borne or foliar pathogens (Kashyap and Dhiman, 2009, Kaiser et al., 2011). Efficacy of *Trichoderma*, *Pseudomonas* and *Bacillus* against foliar pathogens of cotton and other crops was reported earlier (Bhattiprolu, 2010, Bhattiprolu and Prasada Rao, 2013, Bhattiprolu et al., 2016, Chang et al., 2023, Sharma et al., 2024). In view of its importance of the disease the present investigation was conducted to develop an integrated management strategy against *Corynespora* leaf spot.

2. MATERIALS AND METHODS

Laboratory experiments were conducted during (June to September) 2019 in the Department of Plant Pathology, Agricultural College, Bapatla and field experiments with selected treatments were carried out at Regional Agricultural Research Station (RARS), Lam, Guntur, Andhra Pradesh (latitude of 16.3437555 and longitude of 80.4409937) during kharif seasons (July 2019–February 2020 and July 2020–February 2021) to test the efficacy of fungicides, salicylic acid, potash and phosphate salts and biocontrol agents.

2.1. Effect of fungicides on the growth of *Corynespora cassiicola* in vitro

Six fungicides viz., Carbendazim, Mancozeb, Carbendazim 12%+Mancozeb 63%, Propiconazole, Pyraclostrobin and Azoxystrobin were tested at 250, 500, 750 and 1000 ppm by employing poisoned food technique (Nene and Thapliyal, 1993). Briefly poisoned medium (20 ml) was poured in to sterilized Petri plates under aseptic conditions in inoculation chamber and were allowed to solidify. Each plate was inoculated in the centre with five-day old fungal culture disc of 5 mm diameter cut from the periphery of actively growing culture under aseptic conditions and incubated at 28±1 °C in a BOD incubator. Potato Dextrose Agar (PDA) plates containing non poisoned medium inoculated with fungus served as control. Radial growth of the fungus was recorded daily in the control plate starting from the initiation of the fungal growth in correspondence to treatment plates till the fungal growth was full in control. Per cent inhibition of growth over control was calculated using the formula given by Vincent, 1927.

$$I = \frac{C - T}{C} \times 100$$

where, I=per cent inhibition, C=growth of the fungus in non-poisoned food medium and T=growth of the fungus in poisoned food medium.

2.2. Effect of salicylic acid, potash and phosphate salts on the growth of *Corynespora cassiicola* in vitro

Fungicidal activity of salicylic acid, potash and phosphate salts was evaluated against *C. cassiicola*. Salicylic acid at different concentrations viz., 0.5 mM, 2.0 Mm, 3.5 mM, 5 Mm and 6.5 Mm whereas potash and phosphate salts at 0.1%, 0.2%, 0.4%, 0.8%, 1.0% and 2.0% were tested using poisoned food technique (Nene and Thapliyal, 1993). All the potash and phosphate salts viz., phosphorous acid (H_3PO_4), potassium chloride (KCl), potassium sulphate (K_2SO_4), monopotassium phosphate, dipotassium phosphate, potassium nitrate and ammonium dihydrogen phosphate were also tested at 2% concentration by employing detached leaf technique.

2.3. Isolation of biocontrol agents

Selective media were used for isolation of *Pseudomonas* (*Pseudomonas* Agar (For Fluorescein), *Bacillus* (Bacillus Differentiation Agar), Actinomycetes (Actinomycete Isolation Agar) and Methylotrophic bacteria (Ammonium Mineral Salt Agar Medium, Whittenbury et al., 1970) by adopting leaf imprinting technique (Aneja, 2003). Phyllospheric bacteria were isolated from fresh healthy cotton leaves by serial dilution method. Pure cultures were maintained on nutrient agar slants for further evaluation against *C. cassiicola*.

2.4. Evaluation of Antagonistic Potential of phyllospheric bacterial isolates against *C. cassiicola*

Nine isolates of bacteria (PF1, PF2, PF3, BS1, BS2, MB1, MB2, ACT1 and ACT2) were evaluated for their antagonistic potential by dual culture technique against *C. cassiicola* (Whittenbury et al., 1970). One day old bacterial cultures and five-day old *C. cassiicola* were used for the dual culture. A loopful of each bacterial isolate was streaked at two ends of the Petri plate leaving 1 cm from the periphery and a mycelial disc of five mm diameter were inoculated on to PDA plate at the centre. The plates were incubated at 25 °C. The experiment was laid in three replications and 10 treatments including pathogen control. Observations on radial growth were recorded for every 24 h until zone of inhibition was clearly seen. The per cent growth inhibition of the test pathogen over control was calculated according to the formula,

$$\% \text{ growth inhibition} = \frac{\text{Growth in control} - \text{Growth in treatment}}{\text{Growth in control}} \times 100$$

2.5. Evaluation of Antagonistic potential of *trichoderma* isolates against *C. cassiicola*

Five *Trichoderma* isolates collected from Plant Pathology Lab, Agricultural College, Bapatla (T 19012- *Trichoderma virens* strain 1, T-19001- *T. harzianum* strain 1, T 19023- *T. asperellum* strain 1, T 19020- *T. viride* strain 1 and T 19007-

T. asperellum strain 2) and two native isolates of RARS, Lam (T 18001- *T. harzianum* strain 2 and T 18002- *T. asperellum* strain 3) were evaluated for their antagonistic potential against *C. cassiicola* using dual culture technique (Dhingra and Sinclair, 1985). Culture discs (0.5 cm) each of the fungal antagonist and the pathogen were taken from the margin of the actively growing cultures and transferred to PDA medium contained in 9 cm Petri plates on opposite sides approximately at 1 cm from the wall of the plate. A control having the test pathogen alone was kept for comparison. The Petri plates were incubated at 25±1 °C till the control plate was completely covered by *C. cassiicola*. Each treatment was replicated thrice. Colony diameter of the test fungus as well as each antagonist up to the zone of inhibition was recorded and the per cent growth inhibition of the test pathogen over control was calculated according to the formula given by Vincent (1927).

2.6. Field evaluation against *corynespora* leaf spot

Field trial was conducted at RARS, Lam, Guntur, Andhra Pradesh during *kharif*, 2019–2020 and 2020–2021. Susceptible hybrid Jaadoo BG II was sown at spacing of 105×60 cm². The experiment was laid out in a split-plot design with three main plots (ST with fungicide combination of carboxin+thiram (F) 2 g kg⁻¹; ST with biocontrol agent *Trichoderma* sp. (BCA) at 10⁸ CFU ml⁻¹ and ST with compatible F+BCA) and eight subplots viz. S₁- Propiconazole at 0.1%, S₂- Carbendazim 12%+mancozeb 63% at 0.1%, S₃- *Trichoderma* sp. at 10⁸ CFU ml⁻¹ (T 18001), S₄- *Pseudomonas* at 10⁸ cfu ml⁻¹ (PF1), S₅- *Bacillus* at 10⁸ cfu ml⁻¹ (BS2), S₆- Actinomycetes at 10⁸ cfu ml⁻¹ (ACT2), S₇- Salicylic acid at 5mM and S₈- Control and replicated thrice. Three sprays were given at 15 days interval with the first spray initiated as soon as the disease appeared for the first time. The biocontrol agents were added with 0.1% Tween-20 to ensure uniform spread of inoculum (Dhingra and Sinclair, 1985). Seven days after last spraying the disease in different treatments was recorded using 0–4 scale (Sheo, 1988) and PDI was calculated by using the formula given by Wheeler (1969). Treatment wise yield data was recorded and benefit cost ratio was calculated by dividing gross returns with gross expenditure for each treatment in comparison to untreated control.

3. RESULTS AND DISCUSSION

3.1. Efficacy of fungicides on the radial growth of *C. cassiicola*

All the six fungicides significantly reduced the radial growth of *C. cassiicola* at four test concentrations (250 ppm, 500 ppm, 750 ppm and 1000 ppm) compared to control (8.97 cm) (Table 1). Carbendazim, carbendazim+mancozeb and propiconazole completely inhibited the growth of the pathogen at all concentrations tested. However, decrease in radial growth with increased concentrations was

observed with respect to other fungicides. Mancozeb with a mean radial growth of 1.96 cm was found significantly superior over other two fungicides pyraclostrobin (2.90 cm) and azoxystrobin (3.86 cm) (Table 1 and Plate 1). Significant reduction in mean radial growth with increase

in concentration was recorded with the least radial growth at 1000 ppm concentration (1.23 cm) and the highest with 250 ppm concentration (1.71 cm). Significant lower radial growth was observed with that of next higher concentration. Interaction between fungicide and concentrations revealed

Table 1: Effect of fungicides on radial growth of *C. cassiicola* *in vitro*

Fungicides/ Concentrations (ppm)	Colony diameter (cm)					Inhibition (%)				
	250	500	750	1000	Mean	250	500	750	1000	Mean
Carbendazim	0.00(1.00)	0.00(1.00)	0.00(1.00)	0.00(1.00)	0.00(1.00)	100.00	100.00	100.00	100.00	100.00
Mancozeb	2.50(1.87)	2.50(1.87)	1.48(1.58)	1.37(1.54)	1.96(1.72)	72.13	72.19	83.50	84.73	78.14
Carbendazim+ Mancozeb	0.00(1.00)	0.00(1.00)	0.00(1.00)	0.00(1.00)	0.00(1.00)	100.00	100.00	100.00	100.00	100.00
Propiconazole	0.00(1.00)	0.00(1.00)	0.00(1.00)	0.00(1.00)	0.00(1.00)	100.00	100.00	100.00	100.00	100.00
Pyraclostrobin	3.33(2.08)	2.90(1.97)	2.80(1.95)	2.57(1.89)	2.90(1.97)	62.88	67.77	68.78	71.35	67.70
Azoxystrobin	4.43(2.33)	3.87(3.14)	3.67(2.16)	3.47(2.11)	3.86(2.44)	50.61	56.86	59.10	61.31	56.97
Mean	1.71(1.55)	1.54(1.51)	1.32(1.45)	1.23(1.42)		80.94	82.80	85.23	86.23	
Control					8.97 (3.16)					
	Fungicide	Concentration	F × C	Check vs Others						
SEm±	0.003	0.003	0.006	0.006						
CD ($p=0.05$)	0.01	0.01	0.02	0.02						
CV (%)		0.88								

Figures in parentheses are square root transformed values

that inhibition of radial growth at 250 ppm concentration ranged between 50.61% in azoxystrobin and 100% inhibition in carbendazim, carbendazim+mancozeb and propiconazole followed by next superior chemical, mancozeb (72.13%). A similar trend was observed for radial growth inhibition at 500, 750 and 1000 ppm.

Jones and Jones (1985) reported mancozeb and chlorothalonil to be the most effective fungicides against *C. cassiicola* isolate of tomato under *in vitro* conditions. Fluxapyroxad and prothioconazole provided the greatest mycelial growth inhibition of *C. cassiicola* from soybean (Teramoto et al., 2017). The fungicides, carbendazim, carbendazim+mancozeb, hexaconazole and mancozeb showed the complete inhibition of mycelium growth at 250 ppm and 500 ppm against the *C. cassiicola* from rubber (Manju et al., 2019). Propiconazole at 0.1%, myclobutanil at 0.1%, metiram at 0.2%, propineb at 0.3%, zineb+hexaconazole at 0.2%, trifloxystrobin+propineb at 0.3%, metiram+pyraclostrobin at 0.1% and fluxapyroxad+pyroxystrobin at 0.06% completely inhibited the mycelial growth of cotton isolate of *C. cassiicola* (Roshan Baba et al., 2022b).

3.2. Efficacy of salicylic acid on radial growth of *C. cassiicola*
Significant reduction in pathogen growth was observed

(0.0 to 5.43 cm) with salicylic acid at five different concentrations as against control (5.75 cm) and inhibition ranged from 5.57 to 100%. Salicylic acid at 5.0 mM and 6.5 mM concentrations completely inhibited the radial

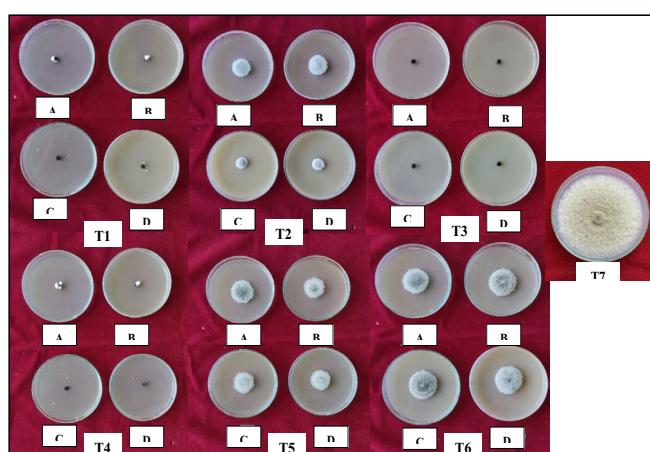


Plate 1: Effect of fungicides on radial growth of *Corynespora cassiicola* *in vitro*; T₁: Carbendazim, T₂: Mancozeb, T₃: Carbendazim+Mancozeb, T₄: Propiconazole, T₅: Pyraclostrobin, T₆: Azoxystrobin, T₇: Control, A-250 ppm, B-500 ppm, C-750 ppm and D-1000 ppm

growth of *C. cassiicola* followed by 3.5 mM and 2.0 mM concentrations with 32.17 and 21.22% radial growth inhibition, respectively. The least radial growth was observed at 0.5 mM concentration with 5.57% inhibition compared to control. No sporulation was observed at 5.0 mM and 6.5 mM while decreased concentration had enhanced

sporulation (Table 2 and Plate 2).

Amborabe et al. (2002) reported that 2.0 mM concentration of salicylic acid reduced the mycelial growth of Eutypalata causing die back in grapevine. Bhattiprolu et al. (2014) observed that salicylic acid application reduced Alternaria leaf spot severity to the tune of 45.47%. Rakesh et al. (2017)

Table 2: Effect of salicylic acid on the radial growth of *Corynespora cassiicola* *in vitro*

Sl. No.	Salicylic acid	Colony diameter (cm)	Per cent inhibition	Sporulation at 6 DAI ($n \times 10^4$ spores mm^{-2})
1.	0.5 mM	5.43 (2.53) ^a	5.57	0.17±0.03
2.	2.0 mM	4.53 (2.35) ^c	21.22	0.16±0.06
3.	3.5 mM	3.9 (2.21) ^b	32.17	0.13±0.01
4.	5.0 mM	0.00 (1.00) ^a	100.00	NIL
5.	6.5 mM	0.00 (1.00) ^a	100.00	NIL
6.	Check	5.75 (2.60) ^c		0.24±0.04
	SEm±	0.01		
	CV (%)	1.12		
	CD ($p=0.05$)	0.03		

DAI: Days after inoculation; Figures in parentheses are arc sine transformed values; Figures indicated with the same alphabets are statistically not significant

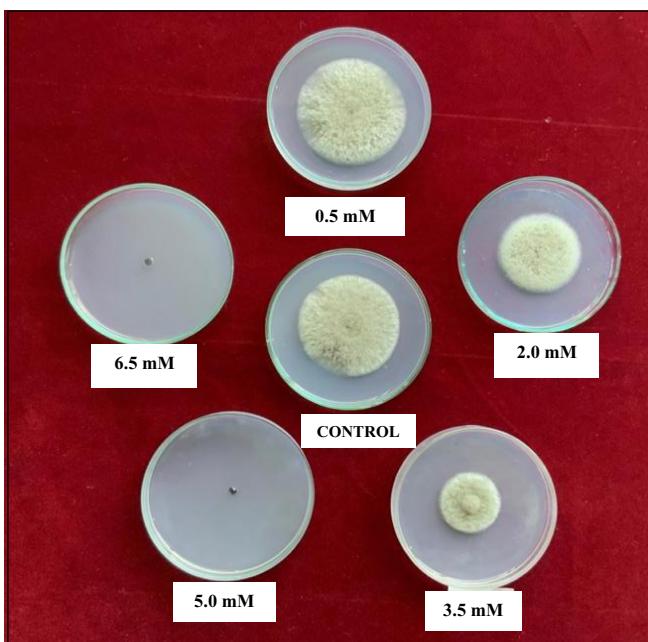


Plate 2: Effect of fungicides on radial growth of *Corynespora cassiicola* *in vitro*

reported inhibition of radial growth (41.2%) of *Alternaria* mycelium under *in vitro* condition using salicylic acid.

3.3. Effect of potassium and phosphate salts on radial growth of *C. cassiicola*

Significant variation among the treatments and also with respect to different concentrations was observed. Among the

salts, H_3PO_3 showed complete reduction of radial growth at 0.2, 0.4, 0.8, 1.0 and 2.0% over control, however, at lower concentration (0.1%) radial growth of *C. cassiicola* (7.17 cm) was high compared to control (5.97 cm) (Table 3). Radial growth of *C. cassiicola* increased with increase in the concentration of KCl, K_2SO_4 and KH_2PO_4 ; KCl recorded 7.09 cm mean radial growth followed by KH_2PO_4 (6.87 cm) as against control (5.97 cm). K_2HPO_4 showed reduction of radial growth at all concentrations in comparison to control. K_2HPO_4 resulted in mean radial growth of 5.02 cm compared to control (5.97 cm) with 15.86% mean per cent radial growth inhibition. KNO_3 salts initially increased the radial growth with increase in concentration upto 0.8% and then decreased with increase in concentration but the mean radial growth was higher (6.98 cm) when compared to control (5.97 cm). $NH_4H_2PO_4$ salt showed reduction in radial growth with increase in concentrations viz., 3.05 cm with mean radial growth of test pathogen as against control (5.97 cm) with 48.72% mean percent radial growth inhibition (Plate 3).

These results were in accordance with Kashyap and Dhiman (2009) where potash and phosphate salts, KH_2PO_4 and H_3PO_3 significantly reduced Alternaria leaf blight in cauliflower.

Abdel-Kader et al. (2012) obtained similar results for the antifungal activity of K_2HPO_4 . Arslan (2015) reported the antifungal activity of K_2HPO_4 and KH_2PO_4 against soil borne pathogens and showed significant reduction of radial

Table 3: Effect of potash and phosphate salts on radial growth of *Corynespora cassiicola* *in vitro*

Treatments/ Concentrations	Colony growth (cm)						
	0.1%	0.2%	0.4%	0.8%	1%	2%	Mean
H_3PO_3	7.17(2.86)	0.00(1.00)	0.00(1.00)	0.00(1.00)	0.00(1.00)	0.00(1.00)	1.2(1.31)
KCl	6.40(2.72)	6.57(2.75)	6.67(2.77)	7.47(2.91)	7.70(2.95)	7.73(2.96)	7.09(2.84)
K_2SO_4	4.67(2.38)	6.47(2.73)	6.60(2.76)	7.13(2.85)	7.40(2.90)	7.57(2.93)	6.64(2.76)
KH_2PO_4	6.10(2.66)	6.63(2.76)	6.93(2.82)	7.10(2.85)	7.13(2.85)	7.33(2.89)	6.87(2.81)
K_2HPO_4	6.10(2.66)	5.40(2.53)	4.97(2.44)	4.67(2.38)	4.53(2.35)	4.47(2.34)	5.02(2.45)
KNO_3	6.77(2.79)	6.97(2.82)	7.30(2.88)	7.47(2.91)	6.73(2.78)	6.63(2.76)	6.98(2.82)
$NH_4H_2PO_4$	2.63(1.91)	2.60(1.90)	2.60(1.90)	2.57(1.89)	3.47(2.11)	4.50(2.35)	3.05(2.01)
Mean	5.69(2.57)	4.93(2.35)	5.01(2.37)	5.20(2.40)	5.28(2.42)	5.46(2.46)	
Check							
Treatment		Concentrations		T × C		Check vs Others	
SEm±	0.006		0.006		0.01	0.01	
CD ($p=0.05$)	0.02		0.02		0.04	0.03	
CV (%)			1.05				
Treatments/Concentrations		Inhibition (%)					
		0.1%	0.2%	0.4%	0.8%	1%	Mean
H_3PO_3		-20.1	100	100	100	100	79.98
KCl		-7.20	-10.05	-11.73	-25.13	-28.98	-29.48
K_2SO_4		21.78	-8.38	-10.55	-19.43	-23.95	-26.80
KH_2PO_4		-2.18	-11.06	-16.08	-18.93	-19.43	-22.78
K_2HPO_4		-2.18	9.55	16.75	21.78	24.12	15.86
KNO_3		-13.40	-16.75	-22.28	-25.13	-12.73	-11.10
$NH_4H_2PO_4$		55.95	56.45	56.45	56.95	41.87	24.62
Mean		4.67	17.11	16.08	12.87	11.56	8.51
Check							

Figures in parentheses are square root transformed values; '-' sign indicates growth excess than check, i.e., growth is promoted

Plate 3: Efficacy of potassium and phosphate salts against radial growth of *Corynespora cassiicola*

growth at 3% concentrations. Khiareddine et al. (2016) recorded the effect of potash salts against soil borne and foliar plant pathogens *in vitro*.

Complete inhibition of the fungal linear growth was achieved at the highest concentration (2%) of the potassium bicarbonate and dipotassium phosphate (Abd-El-Kareem et al., 2020).

In case of detached leaf technique H_3PO_3 salt and $NH_4H_2PO_4$ showed phytotoxicity effect (Table 4). Discolouration of leaf from green to light greenish brown colour was observed immediately after application of H_3PO_3 whereas $NH_4H_2PO_4$ showed discolouration 24 h after application. Remaining salts viz., K_2SO_4 , KCl, KH_2PO_4 , K_2HPO_4 and KNO_3 showed high per cent disease index (30.00 to 41.33%) when compared to control (24.33%). Based on these results, potash and phosphate salts were not

Table 4: Effect of potassium and phosphate salts against *Corynespora cassiicola* using detached leaf technique

Sl. No.	Treatments	Phytotoxicity	Lesion Number	PDI	Colour of the leaf
1.	H_3PO_3	+	0.0 ^e	0.00 (0.00) ^e	Greenish brown
2.	KCl	-	4.8±0.45 ^c	33.44 (35.32) ^c	Light green
3.	K_2SO_4	-	5.8±0.44 ^b	30.00 (33.15) ^c	Light green
4.	KH_2PO_4	-	5.6±0.55 ^b	33.67 (35.45) ^c	Light green
5.	K_2HPO_4	-	7.2±0.84 ^a	50.00 (44.98) ^a	Light green
6.	KNO_3	-	7.0±0.71 ^a	41.33 (39.99) ^b	Light green
7.	$NH_4H_2PO_4$	+	0.0 ^e	0.00 (0.00) ^e	Greenish brown
8.	Control	-	4±0.71 ^d	24.33 (29.54) ^d	Green
	SEm±		0.24	0.91	
	CV (%)		12.74	5.74	
	CD ($p=0.05$)		0.71	2.71	

Figures in parentheses are arc sine transformed values; Figures indicated with the same alphabets are statistically not significant utilized for further field assessment studies.

3.4. Effect of *Trichoderma* isolates on the growth of *C. cassiicola*

The data revealed that all the *Trichoderma* spp. reduced the growth of *C. cassiicola* compared to control. Among the different *Trichoderma* isolates, T 19007 significantly reduced the growth of test pathogen (3 DAI and 4 DAI). At 3 DAI, T 19007 isolate was observed with 1.10 cm radial growth with 26.67% inhibition while T 18001, T 19001, T 19020, T 19023, T 19012 and T 18002 recorded 1.23 cm, 1.27 cm, 1.27 cm, 1.27 cm, 1.40 cm and 1.40 cm radial growth with 18.00%, 15.33%, 15.33%, 15.33%, 6.67% and 6.67% inhibition, respectively. T19001, T 19023 and T

19020 were statistically on par with T 19012 and T 18002 isolates (Table 5).

At 4 DAI, T 19007 isolate recorded 1.10 cm radial growth with 47.62% inhibition of *C. cassiicola*; next best isolate, T 18001 showed 1.23 cm radial growth with 41.23% inhibition which was on a par with T 19001 and T 19020 (1.27 cm and 1.30 cm) with 39.52; 38.09% inhibition, respectively, followed by T 19012 isolate with 1.40 cm radial growth and 33.33% inhibition. T 18002 isolate showed lesser radial growth of 1.53 cm with 27.14% inhibition. Evaluation of efficacy of *Trichoderma* isolates (Table 6) revealed that isolate T 18001 was the best, as it grew fast on test pathogen with good sporulation.

Table 5: Effect of *Trichoderma* isolates on the radial growth of *Corynespora cassiicola* in dual culture

Sl. No.	<i>Corynespora cassiicola</i> dual culture with	Radial growth of <i>C. cassiicola</i> (cm)		Per cent inhibition		Zone of inhibition	Lysis of <i>C. cassiicola</i>	Over-growth of <i>Trichoderma</i> on <i>C. cassiicola</i>	Trichoderma sporulation upon <i>C. cassiicola</i>	Trichoderma sporulation at ZI	Pigmentation in <i>C. cassiicola</i>
		3 DAI	4 DAI	3 DAI	4 DAI						
1.	T 19012	1.4(1.18) ^a	1.40(1.18) ^c	6.67	33.33	-	+	+	++	-	+
2.	T 19001	1.27(1.12) ^b	1.27(1.12) ^d	15.33	39.52	-	+	+	+++	-	+
3.	T 19023	1.27(1.13) ^b	1.40(1.18) ^c	15.33	33.33	-	+	+	-	+	+
4.	T 19020	1.27(1.13) ^b	1.30(1.14) ^d	15.33	38.09	-	+	+	-	-	+
5.	T 19007	1.10(1.05) ^c	1.10(1.05) ^e	26.67	47.62	-	+	+	-	-	+
6.	T 18001	1.23(1.11) ^b	1.23(1.11) ^d	18.00	41.23	-	+	+	+	-	+
7.	T 18002	1.40(1.18) ^a	1.53(1.24) ^b	6.67	27.14	-	+	+	-	-	+
8.	Monoculture (<i>C. cassiicola</i>)	1.50(1.22) ^a	2.10(1.45) ^a								
	SEm±	0.01	0.01								
	CV (%)	2.09	1.83								
	CD ($p=0.05$)	0.04	0.04								

DAI: Days after inoculation; Figures in parentheses are arc sine transformed values; Figures indicated with the same alphabets are statistically not significant; + sign indicates the presence of character and - sign indicates the absence of character

Table 6: Radial growth of *Trichoderma* isolates dual cultured with *Corynespora cassiicola* *in vitro*

Sl. No.	Treatment	Radial growth (cm)			Per cent inhibition	
		2 DAI	3 DAI	4 DAI	3 DAI	4 DAI
1.	T 19012-D	3.13	5.00	5.10	9.09(17.54) ^e	32.00 (34.4) ^a
	T 19012-C	3.10	5.50	7.50		
2.	T 19001-D	3.00	4.90	5.20	10.91(19.30) ^d	26.76 (31.14) ^e
	T 19001-C	3.00	5.50	7.10		
3.	T 19023-D	3.20	5.00	5.30	12.28(20.50) ^c	29.33 (32.78) ^c
	T 19023-C	3.20	5.70	7.50		
4.	T 19020-D	3.20	4.83	5.07	10.31(18.71) ^d	32.4 (34.52) ^a
	T 19020-C	3.20	5.40	7.50		
5.	T 19007-D	4.20	5.20	5.40	27.28(31.47) ^b	28.00 (31.94) ^d
	T 19007-C	4.20	7.20	7.50		
6.	T 18001-D	4.30	5.17	5.30	30.93(33.78) ^a	29.33 (32.78) ^c
	T 18001-C	4.30	7.50	7.50		
7.	T 18002-D	2.77	4.80	5.00	4.00(11.53) ^f	31.50 (34.13) ^b
	T 18002-C	2.80	5.00	7.30		
SEm \pm					0.20	0.03
CV (%)					1.58	0.16
CD ($p=0.05$)					0.61	0.09

D: Dual culture; C: Check; DAI: Days after inoculation; Figures in parentheses are arc sine transformed values; Figures indicated with the same alphabets are statistically not significant

3.5. Interaction of *Trichoderma* isolates with *C. cassiicola* in dual culture

All the seven isolates of *Trichoderma* spp. inhibited the growth of test pathogen *C. cassiicola* (Plate 4). Primarily *Trichoderma* hyphae coiled around the test pathogen resulting in wrinkling of the mycelia and reduction in inter septal length. Finally, protoplast aggregation was observed (Plate 5). Coiling of *Trichoderma* mycelia on conidia, conidial aggregation and penetration of conidia as well as the mycelia of *C. cassiicola* was noticed. Khiareddine et al.

(2016) isolates showed lysis of mycelia and pigmentation on mycelia besides overgrowth of *Trichoderma* on mycelia. Abnormalities were observed in the mycelia of *C. cassiicola* incubated with cell-free culture filtrate of *T. spirale* T76-1 (Burhanah et al. 2019a).

Sandamali et al. (2017) observed the antagonistic activity of native *Trichoderma* isolates against the *Corynespora* pathogen with 51.3% inhibition. Burhanah et al. (2019a) reported that *T. spirale* T76-1 inhibited the mycelial growth of *C. cassiicola*

Plate 4: Antagonistic efficacy of *Trichoderma* isolates on radial growth of *Corynespora cassiicola*

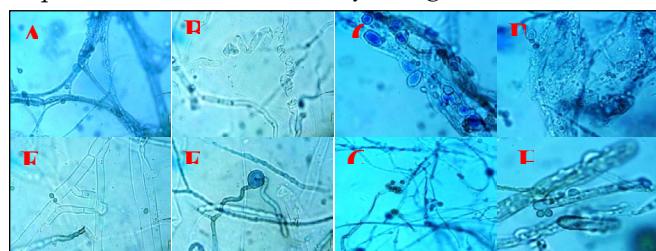


Plate 5: Interaction of *Trichoderma* isolates with *Corynespora cassiicola* in dual culture (400x); A: Abnormalities in *Corynespora* mycelium; B: Wrinkling of *Corynespora* mycelium; C, D: Protoplast aggregation in mycelium; E: Anastomosis in mycelium; F: Chlamydospore formation; G: *Trichoderma* conidia on *Corynespora* conidia; H: *Trichoderma* conidia germination on *Corynespora* conidia

by 84.68% in dual cultures and 41.29% in volatile antifungal bioassays. *Trichoderma asperellum* T₁ isolate inhibited the mycelial growth of *C. cassiicola* by 83.79% in dual cultures and 50.38% in cell-free culture filtrates (Burhanah et al. 2019b). Choudhury and Sumanbala (2020) observed that T₁ and T₂ isolates of *Trichoderma* were moderately antagonistic and P₁ isolate of *Pseudomonas* was highly antagonistic against *Corynespora* sp. affecting Sarpagandha.

3.6. Effect of bacterial biocontrol agents on the growth of *C. cassiicola*

It was observed that all the nine bacterial biocontrol agents (BBCAs: Fluorescent *Pseudomonas*, *Bacillus*, PPMB and Actinomycetes) reduced the growth of *C. cassiicola*. The isolates, PF1, PF3, BS2, ACT1 and ACT2 were found to be effective with 2.37, 2.47, 2.33, 2.37 and 2.30 cm radial growth and 39.23, 36.67, 40.26, 39.23 and 41.03 % inhibition, respectively, as against control (3.90 cm) (Table 7, Plate 6). Interaction of BBCA against *Corynespora* revealed shrinkage of *Corynespora* mycelia, reduction of interseptal length, demelanization in mycelia and excessive production of chlamydospores. Finally, hyphal lysis was observed at zone of interaction (Plate 7).

Table 7: Effect of phyllosphere bacterial isolates on the radial growth of *Corynespora cassiicola* in dual culture

Sl. No.	Treatment	Colony diameter (cm)	Percent inhibition	Zone of Inhibition (cm)	Over growth by the pathogen
1.	PF1	2.37 (1.54) ^{ab}	39.23	0.6	-
2.	PF2	3.50 (1.87) ^d	10.26	-	+
3.	PF3	2.47 (1.57) ^b	36.67	0.5	-
4.	BS1	3.33 (1.83) ^c	14.62	-	+
5.	BS2	2.33 (1.53) ^a	40.26	0.8	-
6.	MB1	3.40 (1.84) ^{cd}	12.82	-	+
7.	MB2	3.30 (1.82) ^c	15.38	-	+
8.	ACT1	2.37 (1.54) ^{ab}	39.23	1.0	-
9.	ACT2	2.30 (1.52) ^a	41.03	0.8	-
10.	Control	3.90 (1.97) ^e			
	SEM \pm	0.01			
	CV (%)	1.18			
	CD	0.03			
	($p=0.05$)				

Figures in parentheses are arc sine transformed values; Figures indicated with the same alphabets are statistically not significant

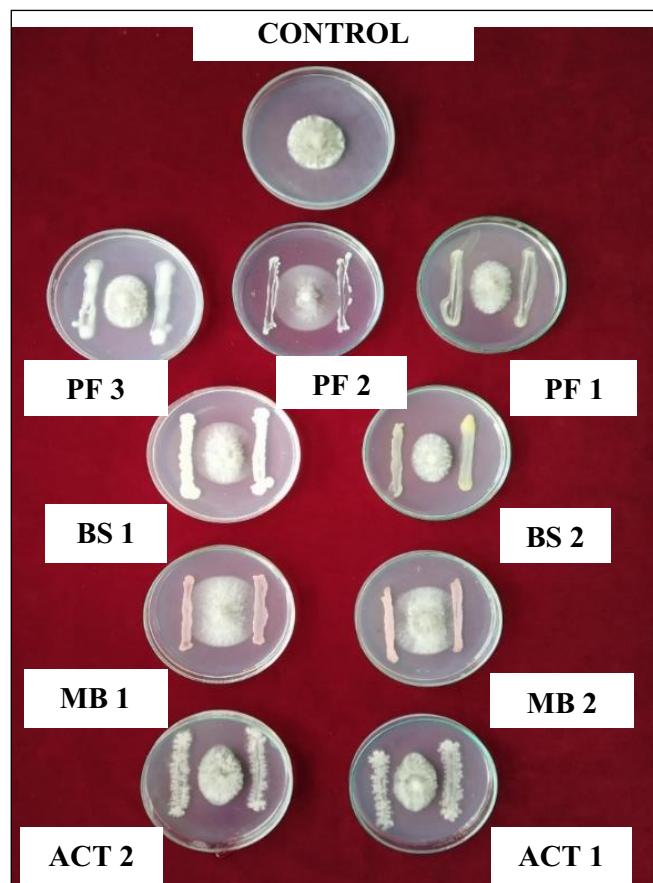


Plate 6: Efficacy of different phyllospheric bacteria against *C. cassiicola*

Mathiyazhagan et al. (2004) reported the bioefficacy of *Bacillus subtilis*, *Pseudomonas fluorescens* and *P. chlororaphis* against *Corynespora* target spot both *in vitro* and *in vivo*. Manju et al. (2014) reported bio efficacy of *Trichoderma*, *B. subtilis* and *P. fluorescens* against *Corynespora* with 65.80, 60.58 and 26.0% inhibition *in vitro*. Avozani et al. (2022) observed that *P. fluorescens*, *P. agglomerans* and *Bacillus* sp. reduced mycelial growth of *C. cassiicola* from soybean by 74%.

3.7. Field evaluation against *Corynespora* leaf spot

Pooled data (2019 and 2020) revealed significant differences among the subplots whereas main plots viz., ST with fungicide, ST with BCA and ST with F+BCA did not differ significantly. After the third foliar spray, propiconazole at 0.1% (12.4 PDI) was found on par with carbendazim+mancozeb at 0.1% (13.9 PDI) and significantly superior to other treatments as against control (27.3 PDI) (Table 8). The yield data showed that foliar spray with propiconazole at 0.1% (2931.7 kg ha⁻¹) was on par with carbendazim+mancozeb at 0.1% (2851.1 kg ha⁻¹) and significantly superior to other treatments over control (2265.6 kg ha⁻¹). BC ratio varied between 1.13–1.46 (Table 8). Highest mean BC ratio was observed with propiconazole

Table 8: Efficacy of selected fungicides, biocontrol agents and salicylic acid on cotton yield (Pooled data of 2019–20 and 2020–21)

Treatments	M ₁		M ₂		M ₃		Mean				
	PDI	PDC	PDI	PDC	PDI	PDC					
S ₁	12.3(20.5)	56.8	12.2(20.3)	54.4	12.8(20.9)	52.5	12.4(20.6) ^a				
S ₂	14.3(22.2)	49.4	13.8(21.8)	48.1	13.6(21.6)	49.7	13.9(21.9) ^a				
S ₃	19.3(26.0)	32.1	19.2(26.0)	28.1	19.4(26.1)	28.1	19.3(26.0) ^{bc}				
S ₄	21.1(27.2)	25.6	21.0(27.3)	21.3	20.2(26.7)	25.2	20.8(27.0) ^{bcd}				
S ₅	21.2(27.4)	25.3	21.1(27.3)	20.9	20.4(26.8)	24.4	20.9(27.2) ^{cde}				
S ₆	18.5(25.4)	34.7	18.2(25.2)	31.9	18.4(25.4)	31.8	18.4(25.4) ^b				
S ₇	20.0(26.6)	29.4	19.3(26.1)	27.5	18.7(25.6)	30.9	19.3(26.1) ^{bcd}				
S ₈	28.3(32.1)		26.7(31.0)		27.0(31.1)		27.3(31.4) ^f				
Mean	19.4		18.9		18.8						
	Main plots (M)	Sub plots (S)	M × S								
SEm±	0.49	0.58	1.01								
CV (%)	9.37	6.73	-								
CD ($p=0.05$)	NS	1.64	NS								
Treatments	Yield (kg ha ⁻¹) in pooled data				% increase in yield over control		BC ratio				
	M ₁	M ₂	M ₃	Mean	M ₁	M ₂	M ₃	Mean			
S ₁	2898.3	2900.0	2996.7	2931.7 ^a	27.9	30.2	29.4	1.44	1.44	1.49	1.46
S ₂	2815.0	2846.7	2891.7	2851.1 ^a	24.2	27.8	25.8	1.40	1.42	1.44	1.42
S ₃	2593.3	2646.7	2650.0	2630.0 ^b	14.4	18.9	16.1	1.29	1.31	1.31	1.30
S ₄	2675.0	2625.0	2651.7	2650.6 ^b	18.0	17.9	17.0	1.33	1.31	1.32	1.32
S ₅	2598.3	2490.0	2548.3	2545.6 ^b	14.6	11.8	12.4	1.28	1.23	1.25	1.25
S ₆	2581.7	2595.0	2553.3	2576.7 ^b	13.9	16.5	13.7	1.17	1.18	1.16	1.17
S ₇	2618.3	2583.3	2616.7	2606.1 ^b	15.5	16.0	15.0	1.30	1.28	1.30	1.29
S ₈	2266.7	2226.7	2303.3	2265.6 ^c	-	-	-	1.14	1.11	1.15	1.13
Mean											

M₁: Seed treatment with carboxin 37.5%+thiram 37.5% (F); M₂: Seed treatment with *Trichoderma* (BCA); M₃: Seed treatment with F+BCA; S₁: Propiconazole at 0.1%; S₂: Carbendazim 12%+mancozeb 63% at 0.1%; S₃: *Trichoderma* sp.; S₄: *Pseudomonas* at 108cfu ml⁻¹; S₅: *Bacillus* at 10⁸cfu ml⁻¹; S₆: Actinomycetes at 108cfu ml⁻¹; S₇: Salicylic acid at 5 mM; S₈: Control; PDI: Per cent disease index; PDC: Per cent disease control

at 0.1% (1.46) followed by carbendazim+mancozeb at 0.1% (1.42) whereas lowest mean BC ratio was realized in unsprayed control (1.13).

Molina et al. (2019) reported 49.6% disease control on application of mancozeb and 32.4% disease control on application of carbendazim against the soybean target spot. Manju et al. (2019) reported that among the fungal, bacterial biocontrol agents and fungicides tested against target spot of rubber, carbendazim+mancozeb treated plots exhibited significantly reduced the disease severity when compared to control.

Field efficacy of propiconazole, *P. fluorescens* and *T. viride* against *Alternaria* leaf spot and rust of cotton was reported earlier (Bhattiprolu, 2017). Fluxapyroxad and prothioconazole gave best results in soybean fields (Teramoto et al., 2017). Zhu et al. (2020) reported that protective and curative effects of metaconazole was higher than the difenconazole in detached leaf studies and pot culture experiments and observed that application of metaconazole at 150 g a.i ha⁻¹ reduced the disease severity of *Corynespora*. Roshan Baba et al. (2022) obtained highest reduction of *Corynespora* leaf spot with propiconazole at

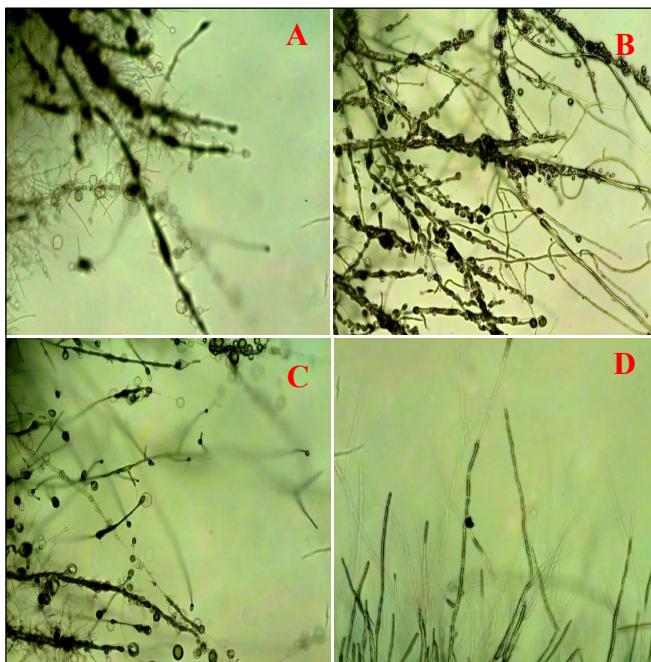


Plate 7: Microscopic observations of effect of antagonistic bacterial isolates on *C. cassiicola* in dual culture (400x); A, B: Chlamydospore formation at ZI; C: Chlamydospore formation away from ZI and D: Hyphal tip lysis at ZI

0.1% and zineb+hexaconazole at 0.2%. Propiconazole at 0.1% was reported effective against *Corynespora* leaf spot with lowest per cent disease index of 4.67 and 87.61% decrease in disease highest cotton seed yield (2493 kg ha^{-1}), benefit cost ratio (1.68) and maximum incremental benefit cost ratio (15.25) were obtained with propiconazole at 0.1% with 37.50% increase in yield over unsprayed control (Mahesh et al., 2022). Seed treatment with pyraclostrobin 5%+thiophanate methyl 45% at 2 ml kg^{-1} followed by spraying tebuconazole 50%+trifloxystrobin 25% at 0.05% at 55 and 75DAS was found effective against target leaf spot of soybean caused by *C. cassiicola* (Hiremath et al., 2023).

4. CONCLUSION

Seed treatment with carboxin 37.5%+thiram 37.5% 2 g kg^{-1} and/or+*Trichoderma* at 10^8 CFU ml^{-1} followed by foliar sprays with propiconazole at 0.1% and carbendazim+mancozeb at 0.1% were significantly superior and cost effective with BC ratio of 1.46 and 1.42, respectively, against *Corynespora* leaf spot in cotton. Hence farmers were advised to take up preventive and/or protective measures.

5. FURTHER RESEARCH

Since the pathogen, *C. cassiicola* has recently developed as major disease of cotton, pathogen variability studies along with developing forecasting models on long term is

necessary. Factors leading to increased incidence and severity need to be studied critically. For strengthening IDM, artificial screening system in field and poly-house should be developed to identify resistant genotypes.

6. ACKNOWLEDGEMENT

The first author is grateful to Acharya N. G. Ranga Agricultural University for giving financial support in the form of stipend during the course of study and extends sincere thanks to Regional Agricultural Research Station, Lam, Guntur for providing necessary facilities during field studies.

7. REFERENCES

Abdel-Kader, M.M., El-Mougy, N.S., El-Gammal, N.G., Abd-El-Kareem, Abd-Alla, M.A., 2012. Laboratory evaluation of some chemicals affecting pathogenic fungal growth. Journal of Applied Science Research 8(1), 523–530.

Abd-El-Kareem, F., Ibrahim, E., Elshahawy, Mahfouz, M.M., Abd-Elgawad, 2020. Resistance against phomopsis leaf blight disease induced by potassium salts in strawberry plants. Bulletin of the National Research Centre, Dokki, Egypt 44, 171.

Amborabe, B.E., Pierrette, F.L., Chollet, J.F., Robin, G., 2002. Antifungal effects of salicylic acid and their benzoic acid derivatives towards *Eutypa lata*: activity relationship. Plant Physiology and Biochemistry 40, 1051–1060.

Aneja, K.R., 2003. Experiments in microbiology and plant pathology. New Age International Pvt. Ltd., New Delhi, 55.

Anonymous, 2025. ICAR-AICRP (Cotton) Annual Report (2024–25) ICAR-All India Coordinated Research Project on Cotton, Nagpur. Available from <https://aiccip.cicr.org.in/aicrp-annrep.html>; https://aiccip.cicr.org.in/pdf/annual_report/AICRP_AR_2024_25.pdf. Accessed on 08.05.2025.

Arslan, U., 2015. Evaluation of antifungal activity of mono and dipotassium phosphates against phytopathogenic fungi. Fresenius Environmental Bulletin 24(3), 810–816.

Avozani, A., Tumelero, A.I., Tonin, R.B., Denardin, N., Silva, A.G., Garces-Fiallos, F.R., 2022. Biological control of *Corynespora cassiicola* and *Drechslera tritici-repentis*. Revista de Agricultura Neotropical, Cassilândia-MS 9(4), e7111. DOI: <https://doi.org/10.32404/rean.v9i4.7111>.

Bhattiprolu, S.L., 2010. Efficacy of *Pseudomonas fluorescens* against bacterial blight and leaf spot diseases of cotton. Indian Journal of Agricultural Sciences 80(3), 235–237.

Bhattiprolu, S.L., 2017. Field efficacy of botanical, biocontrol agents and fungicide against foliar diseases of cotton. Indian Journal of Plant Protection 45(2), 185–188.

Bhattiprolu, S.L., Rao, M.P.P., 2013. Biological management of grey mildew disease of cotton. Cotton Research Journal 3(1), 106–108.

Bhattiprolu, S.L., Bindu Madhavi, G., Chenga Reddy, V., 2016. Efficacy of *Trichoderma viride* and *T. harzianum* against foliar diseases of cotton. Journal of Cotton Research and Development 30(2), 240–243.

Bhattiprolu, S.L., Nakkeeran, S., Rao, M.S.L., Chattannavar, S.N., Monga, D., Chakrabarty, P.K., 2014. Field evaluation of systemic acquired resistance inducing chemicals *Pseudomonas fluorescens* against foliar diseases of cotton. Cotton Research Journal 6(1), 41–45.

Bowen, K.L., Hagan, A.K., Jones, M.P.J., Miller, H.B., 2018. Epidemics and yield loss due to *Corynespora cassiicola* on cotton. Plant Disease 102, 2494–2499.

Burhanah, B., Chaniun, P., Shin-ichi Ito, Sunpapao, A., 2019a. *Trichoderma asperellum* T76-1 displays biocontrol activity against leafspot on lettuce (*Lactuca sativa* L.) caused by *Corynespora cassiicola* or *Curvularia aeria*. Biological Control 129, 195–200.

Burhanah, B., Shin-ichi, I., Sunpapao, A., 2019b. *Trichoderma asperellum* T₁ mediated antifungal activity and induced defense response against leaf spot fungi in lettuce (*Lactuca sativa* L.). Physiological and Molecular Plant Pathology 106, 96–101.

Butler, S., Young Kelly, H., Raper, T., Cochran, A., Jordan, J., Shrestha, S., Lamour, K., Mengistu, A., Castro Rocha, A., Shelb, P., 2016. First report of target spot caused by *Corynespora cassiicola* on cotton in tennessee. Plant Disease 100(2), 535.

Chang, B., Tiameren Ao, N., Sumi, K., Pongener N., Neog P., 2023. *In-vitro* evaluations of *Trichoderma* spp. against different diseases of pigeonpea in Nagaland. International Journal of Economic Plants 10(2), 099–103.

Choudhury, D., Sumanbala, S., 2020. Screening of *Trichoderma* and *Pseudomonas* isolates against *Corynespora* sp. and *Alternaria* sp. in sarpagandha and Thankuni under *in vitro* condition. Plant Archives 20, 2505–2508.

Conner, K.N., Hagan, A.K., Zhang, L., 2013. First report of *Corynespora cassiicola* incited target spot on cotton in Alabama. Plant Disease 97(10), 1379.

Dhingra, O.D., Sinclair, J.B., 1985. Basic plant pathology methods. C R C Florida. USA, 418.

Hagan, A.K., Bowen, K.L., Pegues, M., Jones, J., 2015. Relationship between target spot intensity and seed cotton yield. Phytopathology 105, 4.

Hiremath, I.G., Huilgol, S.N., Hegde, Y., Priyanka, K., 2023. *In vivo* bio-efficacy of fungicides and antagonists for the management of target leaf spot of soybean [*Corynespora cassiicola* (Berk. and Curt.) Wei]. International Journal of Environment and Climate Change 13(10), 4427–4437.

Jones, J.P., Jones, J.B., 1985. Target spot of tomato, epidemiology and control. Annual Meeting of the Florida State Horticultural Society 97(2), 216–218.

Kaiser, C., Philip, B.H., Stacy, G., Nicholas, D., Lynn, L., Mekjell, M., Christensen, J.M., 2011. *In vitro* fungicidal activity of calcium and potassium salts on several commercially significant plant pathogens. HortScience 46(6), 913–916.

Kashyap, P.L., Dhiman, J.S., 2009. Induction of resistance in cauliflower against *Alternaria* leaf blight using potash and phosphonic salt. Asian and Australian Journal of Plant Science and Biotechnology 3(1), 66–70.

Khiareddine, J.H., Abdallah, R., El-Mohamedy, R., Abdel-Kareem, F., Gueddes-Chahed, M., Hajlaoui, A., Daami-Remadi, M., 2016. Comparative efficacy of potassium salts against soil-borne and air-borne fungi and their ability to suppress tomato wilt and fruit rots. Journal of Microbial and Biochemical Technology 8(2), 45–55.

Mahesh, D., Bhattiprolu, S.L., Prasanna Kumari, V., Chiranjeevi, C., Anil Kumar, P., 2021. *In vitro* efficacy of fungicides against *Alternaria* and *Corynespora* leaf spot pathogens infecting cotton. The Andhra Agricultural Journal 68(4), 462–470.

Manju, M.J., Benagi, V.I., Shankrappa, T.H., Kuuvilla Jacob, C., Sabu, P.I., 2014. Antifungal activity of some biological agents against *Corynespora cassiicola* causing Corynespora leaf fall disease of rubber (*Hevea brasiliensis* Muell. Arg.). Indian Journal of Advances in Plant Research 1(6), 30–32.

Mathiyazhagan, S., Kavitha, K., Nakkeeran, S., Chandrasekhar, G., Manian, K., Renukadevi, P., Krishnamoorthy, A.S., Fernando, W.G.D., 2004. PGPR mediated management of stem blight of *Phyllanthus amarus* (Schum and Thonn) caused by *Corynespora cassiicola* (Berk. and Curt.) Wei. Archives of Phytopathology and Plant Protection 37, 183–199.

Mayee, C.D., Mukewar, P.M., 2007. Loss inducing diseases of cotton and their management with special reference to Andhra Pradesh. In: Rao N.G.P., Rao, A., Siddiq, E.A. (Eds.), Cotton in Andhra Pradesh. Farm and Rural Science Foundation and ANGRAU, Hyderabad, A. P., 197–199.

Mounika, P., Bhattiprolu, S.L., Khayum Ahammed, S., Sreekanth, M., 2024. *In vitro* evaluation of different fungicides against *Corynespora cassiicola*. The Journal of Research ANGRAU 52(1), 21–29.

Nene, Y.L., Thapliyal, P.N., 1993. Poison food technique. Fungicides in plant disease control (2nd Edn.). Oxford and IBH publication, New Delhi, India, 413–415.

Proto, M., Supino, S., Malandrino, O., 2000. Cotton: A flow cycle to exploit. *Industrial Crops and Products* 11, 173–178.

Roshan Baba, S.K., Bhattiprolu, S.L., Prasanna Kumari, V., Chiranjeevi, Ch., 2022a. Estimation of yield losses in cotton due to major fungal foliar diseases. *The Journal of Research ANGRAU* 50(3), 17–27.

Roshan Baba, S.K., Bhattiprolu, S.L., Prasanna Kumari, V., Chiranjeevi, C., 2022b. *In vitro* evaluation of fungicides against *Alternaria* and *Corynespora* leaf spot pathogens on cotton. *The Andhra Agricultural Journal* 69(2), 235–243.

Roshan Baba, S.K., Bhattiprolu, S.L., Prasanna Kumari, V., Chiranjeevi, C., 2022c. Field efficacy of fungicides against fungal foliar diseases in cotton. *Journal of Cotton Research and Development* 36(2), 223–230.

Salunkhe, V.N., Gawande, S.P., Nagrale, D.T., Hiremani, N.S., Gokte, N., Waghmare, V.N., 2019. First report of *Corynespora* leaf spot of cotton caused by *Corynespora cassiicola* in Central India. <http://doi.org/10.1094/PDIS-05-18-0823-PDN>.

Sandamali, P.K.N.N., Chandrasena, G., Fernando, T.H.P.S., Silva, P.D.P.M.D., 2017. Antagonistic effect of native *Trichoderma* isolates on economically important foliar pathogens of rubber. *Journal of Agriculture and Value Addition* 1(1), 25–31.

Sharma, S., Sharma, M., Nughal, J., Sharma, A., 2024. Efficacy of *Trichoderma* strains as biotic inducers against *Alternaria* leaf spot of cauliflower. *International Journal of Bio-resource and Stress Management* 15(8), 01–05.

Sheo, R., 1988 Grading system for cotton diseases. Central Institute for Cotton Research, Nagpur. Technical Bulletin, 1–7.

Siva Prasad, B.M.V., Bhattiprolu, S.L., Prasanna Kumari, V., Manoj Kumar, V., Divyamani, V., Patibanda, A.K., Jayalalitha, K., Sai Ram Kumar, D.V., 2022. First report of *Corynespora cassiicola* (Berk. and Curt.) Wei. causing target spot on cotton (*Gossypium hirsutum* L.) in South India. *Plant Disease* 106, 2255.

Teramoto, A., Meyer, M.C., Suassuna, N.D., Cunha, M.G., 2017. *In vitro* sensitivity of *Corynespora cassiicola* isolated from soybean to fungicides and field chemical control of target spot. *Summa Phytopathologica* 43(4), 281–289.

Vincent, J.M., 1927. Distortion of fungal hyphae in the presence of certain inhibitors. *Nature* 59, 850.

Wheeler, B.E.J., 1969. An introduction to plant diseases. John Wiley publication, London, 301.

Whittenbury, R., Phillips, K.C., Wilkinson, J.F., 1970. Enrichment, isolation and some properties of methane-utilizing bacteria. *Microbiology* 61(2), 205–218.

Zhu, J., Zhang, L., Li, T., Ma, D., Gao, Y., Mu, W., Liu, F., 2020 Baseline sensitivity of *Corynespora cassiicola* to metconazole and efficacy of this fungicide. *Crop Protection* 130, 1–7.