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A field experiment was conducted in boro (summer) seasons during December to May, 2021–22 and 2022–23 at Central 
Research Farm of Uttar Banga Krishi Viswavidyalaya, Pundibari, Cooch Behar, West Bengal, India, in acidic soil (pH 

5.10) of the terai region of West Bengal to assess the effect of replacing phosphorus (P) fertilizer application by farm yard 
manure (FYM) and vermicompost (VC) on P uptake and use efficiency by summer rice. The soil of the study area was sandy 
loam, medium in available P (16.48 kg ha-1) content and deficient in available N (126.68 kg ha-1). The experiment was laid out 
in a randomized complete block design with eleven treatment combinations including four P doses i.e., 25%, 50%, 75% and 
100% of the recommended dose, the rest of which were supplemented by either FYM or VC.  Significantly higher P uptake at 
different growth stages was noticed with the increasing fertilizer P application. Combined use of 25% P and 75% vermicompost 
was most effective for grain yield (5.70 t ha-1), harvest index (HI) (42.80%) and agronomic P use efficiency (APUE) (15.25 
kg kg-1). Increasing fertilizer P dose to 75% and 100% with or without organic manures was not found effective in increasing 
yield and P use efficiency, while was also effective in uptake of P and apparent P recovery. 
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1.   INTRODUCTION

Rice (Oryza sativa L.) is the key global crop, with an 
annual production surpassing 780 mt globally, and 

is a primary food staple in Asian countries (Choi et al., 
2007; Kim et al., 2023). According to the Ministry of 
Agriculture report of 2022–2023, India has 46 m ha land 
dedicated to rice farming, producing 130 mt year-1 with a 
productivity of 2.81 t ha-1. In West Bengal, rice is cultivated 
in 5.58 m ha, yielding 16.6 mt year-1 with a productivity 
of 2.98 t ha-1. The rice production in the conventional 
rice-wheat production system is facing an acute decline in 
factor productivity and yield stagnation due to nutritional 
deficiency and poor soil health (Singh et al., 2021; Dhanda 
et al., 2022). Phosphorus (P) is as crucial as water and is 
second to nitrogen (N) as the important limiting element 
for plant growth and nutrition. Phosphorus is one of the 
indispensable structural components in plant cells including 
nucleic acids, proteins, membrane-lipids, sugar-phosphates, 
adenylates etc. Phosphorus is necessary for various metabolic 
and physiological processes including energy metabolism, 
cell division, DNA synthesis and phospholipid biosynthesis 
(Isidra-Arellano et al., 2021; Iqbal et al., 2023). It is essential 
for energy transfer processes (Kumar et al., 2021). Rice also 
responds well to P fertilization in both upland and wetland 
conditions, but P has attained less focus than N. The 
phosphorus use efficiency (PUE) of rice is only around 25% 
(Dobermann and Frairhurst et al., 2000; Fixen et al., 2015), 
with rice alone absorbing 1.07  mt of phosphate (P2O5) at 
a rate of 24.3 kg ha-1, indicating significant potential for 
improvement of P fertilization and management (Bhatta 
et al., 2021). There were some challenges such as resource 
scarcity and the environmental pollution caused by chemical 
P fertilizers are major concerns in modern agriculture (Yu 
et al., 2013; Yan et al., 2022). Phosphorus availability in 
most soils is limited due to slow diffusion and high fixation 
rate ( Jokubauskaite et al., 2015; Ahash et al., 2025). Use 
of phosphatic fertilizers higher available P forms for plant 
uptake, but overuse of fertilizers can reduce PUE and increase 
the accumulation of surplus P in soil (Ayaga et al., 2006; 
Borda et al., 2014). Increasing the yield and use efficiency 
of P is imperative for rice productivity in all types of soils. 
Several strategies have been adopted to lower dependence 
on fertilizer P sources. Adoption of integrated nutrient 
management practices involving organic and inorganic 
fertilizers is the prime approach to make the production 
system more sustainable and profitable (Sarkar et al., 2017). 
Replacing mineral P fertilizer with organic manure could 
reduce the demand of P fertilizers (Bi et al., 2020). In 
double rice system long term organic manure substitution 
significantly increased PUE, P uptake and yield of rice 
(Hayatu et al., 2023). Besides the rice yield the integration 
of organic manures with fertilizers could also increase soil 

nutrient status and total productivity (Dhaliwal et al., 2023). 
However, limited information is available concerning how 
P application affects P uptake and use efficiency in rice in 
conventional practices in presence or absence of organic 
manures. Considering this the present study was undertaken 
to ascertain the effect of organic manures and graded doses 
of P on P uptake and use efficiency by rice in conventional 
practice in an acidic soil of northern part of West Bengal 
which is frequently reported as deficient in P. 

2.   MATERIALS AND METHODS

2.1.  Experiment site and treatment details 

The field experiment was conducted during boro (summer) 
seasons during December to May, 2021–22 and 2022–
23 at Central Research Farm of Uttar Banga Krishi 
Viswavidyalaya, Pundibari, Cooch Behar, West Bengal, 
India (26º19'86" N latitude and 89º23'53" E altitude of 
51m AMSL),. The soil of the experimental field belongs 
to Typic Fluvaquents with 60.25, 19.63, 20.12% of sand, 
silt and clay respectively, having sandy loam texture. With 
an initial pH value of 5.10, the soil was classified as acidic, 
potentially affecting nutrient availability and microbial 
activity. The electrical conductivity (EC) was measured at 
0.09 dS m-¹, indicating low salinity, suggesting minimal 
risk of salt accumulation. The organic carbon content was 
found to be 0.61%, categorized as medium, reflecting a 
moderate presence of decomposable organic matter. The 
available N, P2O5 and K2O content were 126.68, 16.42 and 
128.33 kg ha-1, respectively. As a source of organic manures 
vermicompost and FYM were used. Vermicompost and 
FYM contain N, P2O5 and K2O were 2.46, 1.15, 1.45% 
and 0.75, 0.30, 0.52% respectively. The experiment was 
conducted in randomized complete block design with 
11 treatments and three replications growing a medium 
duration (120–130 days) rice cultivar, IET 24171 (Uttar 
Sona). The NPK recommendation (RDF) for summer 
rice in this region is 120:80:80 kg ha-1. The treatment 
combinations were T1-control (no P) (NK), T2-NPK (RDF), 
T3-100% vermicompost+NK, T4-75% vermicompost+25% 
P+NK, T5-50% vermicompost+50% P+NK, T6-25% 
vermicompost+75% P+NK, T7-100% FYM+NK, T8-75% 
FYM+25% P+NK, T9-50% FYM+50% P+NK, T10-25% 
FYM+75% P+NK and T11-50% vermicompost and 50% 
FYM+NK. Vermicompost and FYM were applied before 
transplanting or rice seedlings. Rice seedlings were manually 
transplanted in the main experimental plot as two seedlings 
per hill with 20×15 cm2 hill spacing in 3×5 m2 plots. 
Standard agronomic management practice was followed 
to grow the crop. Recommended doses of P2O5 and K2O 
were applied in the soil at the final land preparation in 
the forms of single super phosphate (SSP) and muriate of 
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potash (MoP). Nitrogen was applied as urea in three split 
doses each at transplanting, maximum tillering and booting 
stages. The rice grain yield was calculated from a harvest 
area of 4 m2 quadrate from the central position in each plot 
and adjusted to 14% moisture content. Phosphorus content 
in the plant parts at different growth stages was measured 
by the wet digestion method using vanado-molybdate 
yellow color  method as described by Jackson (1973) after 
digesting the samples in mixture HNO3:HCLO4 (9:4 m) 
at a temperature 105°C. The P uptake (in kg ha-1) was 
computed by multiplying P content in dry matter and dry 
mater production in kg ha-1.

2.2.  Calculation of phosphorus use efficiencies 

Phosphorus use efficacy of rice was quantified by calculating 
various indices, namely agronomic phosphorus use efficiency 
(APUE), physiological phosphorus use efficiency (PPUE), 
Apparent phosphorus recovery (APR), partial phosphorus 
productivity (PPP) (Syers et al., 2008) and grain P harvest 
index (Grain P HI) (Yoshida et al., 1976), using the 
equations: 

APUE (kg kg-1)=(Yt–Yo)/Pa

PPUE  (kg kg-1)=(Yt-Yo)/(Ut-Uo)

APR (%)=[(Ut-Uo)×100]/Pa

PPP (kg kg-1)=Yt/Pa

Grain P HI (%)=[Yt (grain)/Yt (grain+straw)]×100

Where, Yt=Grain yield in the  treatment plot (kg ha-1), 
Yo=Grain yield in the control plot (kg ha-1), Ut=Uptake of 
P in the  treatment plot (kg ha-1), Uo=Uptake of P in the 

control plot (kg ha-1), Pa=P applied in the test treatment (kg 
ha-1) respectively and  Yt (grain)=Grain yield (kg ha-1), Yt 
(grain+straw)=Grain and straw yield (kg ha-1) respectively.

2.3.  Statistical analysis

One-way analysis of variance (ANOVA) in RCBD was 
performed using IBM SPSS as per Gomez and Gomez 
(1984) (version 26.0, SPSS Inc. Chicago, IL, USA) for 
pooled data from two years of field experiments. The 
significance of the difference between means was determined 
at 5% (p<0.05) level of probability using Duncan’s multiple 
range test (DMRT).

3.   RESULTS AND DISCUSSION

3.1.  Phosphorus uptake at different growth stages of rice

The Puptake gradually increased with the crop age (Table 
1). The P levels had significant influence on P uptake by 
rice at tillering, panicle initiation stage and flowering stages.  
The analysis of pooled data for these consecutive two years 
experiments showed that, P uptake significantly (at p≤0.05) 
increased from 3.41 kg ha-1 in T1 (no P. NK) (control) to 
7.19 kg ha-1 in T2 (NPK, RDF) in the tillering stage. The 
pooled data of two years showed that the highest P uptake 
was observed in T2 (8.09 kg ha-1) followed by T6 (7.69 kg 
ha-1), T10 (7.23 kg ha-1) and lowest under control T1 (4.80 
kg ha-1) at panicle initiation stage. Similarly in flowering 
stage also the maximum uptake of P (13.08 kg ha-1) was 
recorded in T2 followed by T6 (10.83 kg ha-1), and T10 (9.91 
kg ha-1 while minimum was observed at the control plot i.e. 
T1 ( 6.80 kg ha-1). The phosphorus uptake at flowering stage 

Table 1: Effect of phosphorus, FYM and vermicompost on uptake of P (kg ha-1) at tillering, panicle initiation and flowering 
stages of summer rice

Treatments Tillering Panicle initiation Flowering

1st year 2nd year Pooled 1st year 2nd year Pooled 1st year 2nd year Pooled

T1 3.39 3.42 3.41j* 4.48 5.12 4.80h 6.67 6.93 6.80h

T2 7.12 7.26 7.19a 7.92 8.25 8.09a 12.69 13.46 13.08a

T3 4.20 3.98 4.09h 5.16 5.88 5.52fg 6.91 7.55 7.23g

T4 4.86 5.13 5.00f 5.68 6.35 6.02ef 7.77 7.96 7.87f

T5 5.28 5.69 5.49d 6.45 6.82 6.64d 8.92 9.64 9.28d

T6 6.28 6.53 6.40b 7.53 7.85 7.69b 10.27 11.38 10.83b

T7 3.44 3.49 3.47ij 4.63 5.38 5.01g 6.72 7.25 6.99gh

T8 4.58 4.62 4.60g 5.49 5.96 5.73f 7.34 8.02 7.68f

T9 4.99 5.36 5.18e 6.12 6.46 6.29e 8.09 8.37 8.23e

T10 6.19 6.31 6.25c 7.12 7.33 7.23c 9.54 10.28 9.91c

T11 3.56 3.61 3.59i 4.66 5.64 5.15g 6.79 7.39 7.09gh

SEm± 0.021 0.020 0.014 0.023 0.030 0.019 0.039 0.046 0.030

LSD (p=0.05) 0.06 0.06 0.04 0.07 0.09 0.06 0.12 0.14 0.09
*Different letters in the same column are significantly different by duncan multiple range test (DMRT) at p≤ 0.05
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was 81.91% and 61.68% higher than tillering and PI stages, 
respectively. The results depicted that the P uptake was 
significantly (at p<0.05) higher when the recommended rate 
of P fertilizer was applied than substituting inorganic P with 
organic manures. Similar result was reported by Banerjee 
et al. (2006) and Lu et al. (2021). Application of P through 
chemical fertilizers resulted in higher P uptake by rice plants 
compared to organic manure, due to the greater solubility 
and immediate availability of phosphorus in fertilizer. The 
P uptake in different stages also significantly (p<0.05) 
increased when P fertilizer was applied in increasing doses 
with the manure. A similar observation was also reported 
by Liu et al. (2024).   

The different treatments combinations had significant (at 
p<0.05) influence on P uptake on rice grain and straw at 
harvest in both the years. The application of increasing doses 
of inorganic P increases the uptake of P. It was found that 
T2 (9.74 kg ha-1) [NPK (RDF)] was statistically superior 
in terms of P uptake in straw and statically at per with T6 
(9.72 kg ha-1) [25% vemicompost+75% P+NK] among the 
rest of the treatments and lower in T1 (4.80 kg ha-1). On the 
other hand, P uptake by the grain significantly (at p≤0.05) 
increased from 4.66 kg ha-1 in T1 (no P. NK) (control) to 
7.81 kg ha-1 in T2 (NPK, RDF). In grain the P uptake was 
highest in T2 (7.81 kg ha-1) among all the treatments and 
lowest P uptake was in T1 (4.66 kg ha-1) (Figure 1). On an 
average the uptake of P was lower by 25.69% in grain than 
the straw at harvesting. The inorganic P fertilizers are hard 
to remove from soils, leading to soil P surplus. Higher rates 
of inorganic P input tend to increase the soil P pool, leading 
to a higher uptake of P (Sharpley and Wang, 2014).

flowering stages was also noted, likely due to plant uptake of 
P. The pooled available P over two years was comparatively 
higher by 79.90%, 60.50%, 25.71%, 15.63%, and 138.64%, 
62.29%, 41.87%, 15.90% in T2 (RDF treatment) than 
in treatments with 100%, 75%, 50%, and 25% P (RDF), 
vermicompost, and FYM at harvest, respectively. In 
all stages, soil available P was higher in treatments 
without combining P with organic manures (FYM and 
vermicompost). Similar results were reported by Lu et al. 
(2021) and Sun et al. (2022). The treatment where 100% 
P was replaced by organic manure (T11), with 50% of P 
replaced by FYM and the remaining 50% by vermicompost, 
did not significantly increase soil available P. However, 
treatments combining vermicompost and/or FYM with 
inorganic P showed higher soil P and P uptake compared to 
the control. Organic manures improved the soil environment 
for nutrient and water movement by increasing soil organic 
carbon, adjusting soil pH, and reducing P adsorption 
when crop residues were incorporated, thus enhancing P 
availability in soil (Brar et al., 2015; Malobane et al., 2020).

3.3.  Grain yield and phosphorus use efficiency 

The mean data on grain yield presented in Table 2 
indicate that various organic and inorganic phosphorus 
(P) inputs significantly (at p<0.05) affected the grain 
yield. Among the different P sources, the combination 
of 75% vermicompost+25% P+NK, i.e., T4, was effective 
in providing a well-balanced supply of essential nutrients 
aligned with the crop's requirements, leading to the 
significantly highest grain yield of 5.70 t ha-1 (at p<0.05). 
In contrast, the control plot (T1) showed the lowest grain 
yield at 4.48 t ha-1. The grain yield was about 27.23% higher 
in T4 compared to the control (T1) and 22.32% higher than 
T2 (NPK, RDF). Grain yield significantly increased by 1.00, 
1.22, 0.58 kg ha-1 with the addition of vermicompost at 
100%, 75%, 50%, respectively, and by 0.4, 0.76, 0.37 kg ha-1 
with FYM 100% and 75%, 50% RDF P from the control 

3.2.  Available phosphorus content in soil at different growth 
stages of rice 

The available P content in soil at different stages is shown 
in Figure 2. The figure indicates that the highest available 
P in soil was observed in T2 (NPK, RDF) across all stages, 
while the lowest was recorded in T1 (control) (no P, NK). 
A decreasing trend of available P in soil from tillering to 

Figure 1: Effect of phosphorus, FYM and vermicompost 
on uptake of phosphorus (kg ha-1) by rice grain and straw at 
harvesting stage 

Figure 2: Effect of phosphorus, FYM and vermicompost on 
available phosphorus (kg ha-1) content in soil at different stages 
of summer rice (pooled data of two years) 
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plot. Grain yield depended on the number of panicles 
bearing tillers hill-1, grains panicle-1, and grain weight. The 
results suggested that organic manures provided better 
nutritional quality and a favourable nutrient balance when 
supplemented with NPK, resulting in maximum yield. This 
might be because organic manure supplies nutrients to the 
crop more effectively and timely compared to other organic 
sources. This aligned with the findings of Singh et al. (2005). 
The positive effect of integrated nutrient management using 
both inorganic fertilizers and organic manures on higher 
crop yields was also reported earlier (Doley et al., 2021; Urmi 
et al., 2022). Significant improvements in plant height, tiller 
number, grain yield, and soil fertility were observed when 
vermicompost was combined with specific nutrient ratios 
(Shenoy et al., 2020). A similar trend of better performance 
was reported by Dash et al. (2010).  

The harvest index (HI) indicated how photosynthates 
were partitioned from vegetative parts to reproductive parts 
of the plant. It was also defined as the ratio of economic 
yield to biological yield. This might be due to the fact that 
exposure of the reproductive stage of summer rice to higher 
temperatures could have restricted photosynthesis and the 

transfer of photosynthates from vegetative to reproductive 
parts. The results showed that HI was significantly 
influenced by the application of organic nutrients (Table 2). 
Like grain yield, the highest HI percentage was observed in 
T4 treatment (42.80%), which was statistically similar to T3 
(42.65%). This could be because of better grain yield linked 
with increased biological yield due to improved nutrient 
availability. Conversely, plots without P+NK from RDF (T1 
treatment) had the lowest harvest index value at 41.10%, 
consistent with the findings of Verma et al. (2024). 

The ability to recover P from applied phosphorus 
fertilizer resources was called agronomic phosphorus use 
efficiency (APUE). Phosphorus use efficiency was vital for 
nutrient cycling (Marzouk et al., 2024). This experiment 
showed that APUE was highest in T4 treatment (75% 
vermicompost+25% P+NK) and lower in T2 treatment 
(NPK, RDF). The APUE ranged from 15.25 to 2.38 kg 
kg-1, and PPP ranged from 71.25 to 58.25 kg kg-1 (Table 
2). The linear regression (Figure 3) indicated that APUE 
(R2=0.99) and PPP (R2=0.41) had a significant (at p<0.05) 
and positive relationship with grain yield. Combining 

Table 2: Effect of phosphorus, FYM and vermicompost on 
grain yield (t ha-1), grain HI (%) and P use efficiency indices 
in summer rice (pooled over years)

Treat-
ment

Grain 
yield 
(kg 

ha-1)

Grain 
HI 
(%) 

APUE 
(kg 

kg-1) 

PPUE 
(kg 

kg-1) 

APR     
(%)

PPP         
(kg 

kg-1) 

T1 4.48h 41.10c - - - -

T2 4.67g 41.34c 2.38j 55.15h 4.31a 58.38f

T3 5.48b 42.65a 12.50b 653.59b 1.91g 68.50b

T4 5.70a 42.80a 15.25a 699.14a 2.18f 71.25a

T5 5.06d 41.92abc 7.25e 256.07e 2.83d 63.25de

T6 4.74efg 41.21c 3.25h 81.76g 3.98b 59.25f

T7 4.89e 41.64bc 5.13f 400.00d 1.28j 61.13ef

T8 5.24c 42.17abc 9.50d 565.06c 1.68h 65.50cd

T9 4.85ef 41.54abc 4.63g 178.74f 2.59e 60.63ef

T10 4.71fg 41.38c 2.88i 82.14g 3.50c 58.88f

T11 5.33c 42.50ab 10.63c 699.59a 1.52i 66.63bc

SEm± 0.04 0.60 0.03 2.17 0.02 0.27

LSD 
(p=
0.05)

0.12 1.21 0.10 6.41 0.04 0.79

*Different letters in the same column are significantly 
different by Duncan Multiple Range Test (DMRT) at p≤ 
0.05

y = 12.507x - 55.997
R² = 0.99
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chemical fertilizers with organic manure could boost APUE 
by improving P availability and soil P activity. Higher P 
uptake, APUE, and PPP under T4 treatment in our study 
could be due to increased P availability and enhanced 
soil microbial activity. The higher PPP values under 75% 
vermicompost+25% P+NK might be attributed to higher 
crop yields and more efficient P fertilizer utilization. Similar 
results were observed in PPUE, where the highest value was 
found in T11 (699.59 kg kg-1) with 50% vermicompost+50% 
FYM+NK, statistically comparable to T4 (699.14 kg         

Figure 3: Linear association between agronomic phosphorus 
use efficiency (APUE), physiological phosphorus use efficiency 
(PPUE) and partial phosphorus productivity (PPP) with grain 
yield of rice
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kg-1). PPUE showed a significant and positive (R2=0.89) 
relationship with grain yield (Figure 3). Over the years, APR 
in treatments where vermicompost and FYM were applied 
alone without P had less impact, indicating P deficiency due 
to the reduction and mining of intrinsic soil P reserves to 
support plant growth. The APR was positive in inorganic 
P addition treatments, following the order: T2>T6>T10>T5, 
demonstrating a higher tendency of P build-up under these 
treatments. Since the total P input was the same across 
P-added treatments, the lower APR in our results could 
be due to higher P uptake, PUE, and crop yield, consistent 
with the findings of Liang et al. (2025).  

4.   CONCLUSION

TThe grain yield and different indices of phosphorus use 
efficiency (PUE) significantly increased with a higher 

rate of (75%) P replacement by vermicompost or FYM. 
Only inorganic P fertilizer application could not effectively 
increase rice yield; rather, it led to higher P accumulation 
in soil. Inorganic P fertilizer could be replaced up to 75% 
by organic manures for rice to achieve greater yield and 
higher P use efficiency. Vermicompost was found to be 
more effective than FYM. most characteristics, particularly 
in berry-related traits.
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