



# Possibilities of using Moringa (*Moringa oleifera*) Seed Meal as a Partial Substitute for Groundnut Cake in Broiler Diets and its Effect on Growth Performance of Broiler Chicks

Manju<sup>1</sup>, Rakesh Kumar Khinch<sup>2</sup>, Monika Karnani<sup>1</sup> and Sarjna Meena<sup>3</sup>

<sup>1</sup>Dept. of Animal Nutrition, <sup>2</sup>Dept. of Veterinary Medicine, <sup>3</sup>Dept. of Veterinary Pathology, Post Graduate Institute of Veterinary Education and Research (PGIVER), Jaipur, Rajasthan (302 031), India

 Open Access

Corresponding  [dr.manju20@gmail.com](mailto:dr.manju20@gmail.com)

 0000-0002-5867-9648

## ABSTRACT

The experiment was conducted from February to March, 2018 at Poultry unit of CVAS, Udaipur (Rajasthan), to investigate the possibilities of using *Moringa oleifera* Seed Meal (MOSM) as a partial substitute for groundnut cake in broiler diets and its effect with or without using an acidifier as a feed additive on the growth performance of broiler chicks. A feeding trial of 42 days was conducted on 300 broiler chicks in a 5×2 factorial design. The dietary treatments were basal diet as control without MOSM ( $T_1$ ), basal diet with MOSM @ 1% ( $T_2$ ), 2% ( $T_3$ ), 3% ( $T_4$ ), 4% ( $T_5$ ), basal diet with Acidifier @ 1 g kg<sup>-1</sup> feed ( $T_6$ ), basal diet with MOSM @ 1, 2, 3 and 4% with Acidifier @ 1 g kg<sup>-1</sup> feed for  $T_7$ ,  $T_8$ ,  $T_9$  and  $T_{10}$ , respectively. Highly significant ( $p<0.01$ ) effect of dietary treatments i.e. inclusion of MOSM at different levels on body weight, body weight gain, average daily gain, performance index, protein efficiency ratio, nitrogen balance, digestibility of dry matter, crude protein, ether extract and crude fiber were observed. However, the effect of MOSM in the broiler ration on feed conversion efficiency and protein efficiency ratio was observed to be significant ( $p<0.05$ ). The effect of acidifier on dry matter digestibility was observed to be significant ( $p<0.05$ ). It was concluded that MOSM with or without an acidifier can be incorporated in the broiler's diet without any adverse effect on the growth performance of the broiler chicks.

**KEYWORDS:** Acidifier, broiler, digestibility, growth, *Moringa oleifera* seed meal

**Citation (VANCOUVER):** Manju et al., Possibilities of using Moringa (*Moringa oleifera*) Seed Meal as a Partial Substitute for Groundnut Cake in Broiler Diets and its Effect on Growth Performance of Broiler Chicks. *International Journal of Bio-resource and Stress Management*, 2025; 16(12), 01-12. [HTTPS://DOI.ORG/10.23910/1.2025.6630](https://doi.org/10.23910/1.2025.6630).

**Copyright:** © 2025 Manju et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, that permits unrestricted use, distribution and reproduction in any medium after the author(s) and source are credited.

**Data Availability Statement:** Legal restrictions are imposed on the public sharing of raw data. However, authors have full right to transfer or share the data in raw form upon request subject to either meeting the conditions of the original consents and the original research study. Further, access of data needs to meet whether the user complies with the ethical and legal obligations as data controllers to allow for secondary use of the data outside of the original study.

**Conflict of interests:** The authors have declared that no conflict of interest exists.

## 1. INTRODUCTION

The population of India is huge and increasing every day so getting good-quality food to every individual is a challenging task. The poultry industry is a wide sector. It provides good quality protein in a very short span of 35–42 days. The success of the poultry sector depends on effective feed management because feed alone contributes 60–70% of poultry production costs (Sharma et al., 2022). Poultry production, particularly broiler production, is the quickest way to increase the availability of high-quality protein for human consumption (Karnani et al., 2019). The capacity of poultry to provide rich organic manure as natural fertilizer is an important source of income to the persons engaged in allied activities in the poultry business (Karnani et al., 2020). Chicken is the most widely accepted meat in India. In contrast to beef and pork, it does not have any religious taboos. Poultry production performance largely depends on nutrition and environmental factors. One of the practical solutions to some of the problems of poultry in the tropics is to pay attention to the areas of nutrient requirements of birds for maintenance and production and the nutrient composition of the available feedstuffs. The most logical step to take in solving the shortage and dwindling raw material supply is to direct efforts towards utilizing plants' by-products and wastes for feeding poultry birds. Groundnut cake, a conventional feed resource, has been used as the source of animal protein in diets of poultry in many countries due to the unavailability of cheaper alternative protein sources. With the present trend of rising prices of feedstuffs, considerable attention has been placed on the search for non-conventional feedstuffs. In many tropical and subtropical countries, various parts of moringa (leaves, fruits, immature pods, flowers and seeds) are incorporated into the traditional food of humans (Siddhuraju and Becker, 2003; Anhawange et al., 2004). Moringa is universally referred to as "the miracle plant" or "the tree of life". Almost every part of *M. oleifera* can be used for food, medication and industrial purposes (Khalaifalla et al., 2010). The leaves, flowers and pods are used as good sources of vitamins A, B and C, riboflavin, nicotinic acid, folic acid, pyridoxine, ascorbic acid, beta-carotene, calcium, iron, and alpha-tocopherol (Dahot, 1988). The relative lack of anti-nutritional components and the high protein, lipid and sulphur-containing amino acid contents encourage the use of moringa seeds as an animal feed (Ferreira et al., 2008). It is an excellent source of proteins for monogastric animals (Ferreira et al., 2008). Moringa seeds contain antibiotics (terygospermin), fatty acids like linolenic acid, linoleic acid, behenic acid and oleic acid (Ben oil). Some researchers have claimed that moringa improves performance (Wahab et al., 2020; Khalid et al., 2021; Ullah et al., 2022), and other studies did not significantly improve performance indicated by high FCR

value (El-Deep et al., 2019; Alabi et al., 2020). Poultry diet is normally formulated to meet the requirements for proper production. Also, the full benefits of the nutrient may not be obtained unless we add a number of feed additives. Several substances as feed additives have been investigated in recent years with the aim of finding alternatives to growth-promoting antimicrobials that are able to support productive performance and prevent the incidence of some diseases in poultry (Huyghebaert et al., 2011). Among such substances, acidifiers have the potential to improve nutrition utilization, alter gut pH, and cease the growth of dangerous microorganisms in the digestive system (Melaku et al., 2021; Hamidifard et al., 2023; Okey, 2023).

This study, therefore, considers the replacement of groundnut cake at different levels of *Moringa oleifera* seed meal with supplementation of acidifier on the growth performance of broiler chicks.

## 2. MATERIALS AND METHODS

The present investigation was conducted from February to March, 2018 at the Poultry farm and the Department of Animal Nutrition of College of Veterinary and Animal Science, Navania, Vallabhnagar, Udaipur, Rajasthan University of Veterinary and Animal Sciences, Bikaner.

### 2.1. Processing of *Moringa oleifera* seeds

*Moringa oleifera* seeds were purchased from the local market and sorted out manually. Moringa seeds were allowed to soak in water overnight and rinsed with water the next morning. Then Moringa seeds were dried and ground in a domestic blender to obtain *Moringa oleifera* seed meal (MOSM), which was added to the basal diets.

### 2.2. Acidifier

Commercial acidifier AlvipH, manufactured by Alivira Health Care, a combination of formic acid, propionic acid, benzoic acid, butyric acid and orthophosphoric acid was included in the ration @ 100 g 100 kg of feed<sup>-1</sup>.

### 2.3. Experimental house management

The broiler chicken house was thoroughly cleaned with water and disinfected with formalin. All waterers and feeders were thoroughly cleaned and disinfected before use. Heating equipment was turned on 24 hours before the arrival of the chicks. All the chicks were maintained under a standard management regimen of brooding and lighting. Proper ventilation and biosecurity measures were ensured throughout the trial. Ad libitum clean and fresh water was provided throughout the trial. Fresh and dry wheat straw was used as bedding material.

### 2.4. Experimental chicks and design

Three hundred, day-old Vencobb broiler chicks were

individually weighed and randomly divided into ten groups of 30 chicks, which were further subdivided randomly into 2 replicates of 15 chicks in a 5x2 factorial arrangement. The dietary treatments were basal diet as negative control ( $T_1$ ), basal diet mixed with graded level of MOSM @ 1% without acidifier ( $T_2$ ), 2% MOSM without acidifier ( $T_3$ ), 3% MOSM without acidifier ( $T_4$ ), 4% MOSM without acidifier ( $T_5$ ), basal diet with acidifier ( $T_6$ ), 1% MOSM with acidifier ( $T_7$ ), 2% MOSM with acidifier ( $T_8$ ), 3% MOSM with acidifier ( $T_9$ ) and 4% MOSM with acidifier ( $T_{10}$ ), respectively.

## 2.5. Experimental diets

The various feed ingredients for computing different experimental rations were purchased from the local market in one lot before starting the experiment and were analyzed for proximate composition according to AOAC (2005). Ingredient-wise compositions of experimental diets are presented in Table 1. The rations formulated for various treatment groups for starter and finisher chicks were made iso-caloric and iso-nitrogenous (Tables 2 and 3). The broiler starter and broiler finisher rations were formulated as per the Anonymous (2007). Experimental starter rations were

Table 1: Ingredient composition of experimental rations (kg 100 kg feed<sup>-1</sup>)

| Sl. No. | Feed ingredients   | Starter ration (0-3 weeks) |     |     |     |    | Finisher ration (4-6 weeks) |     |     |     |     |
|---------|--------------------|----------------------------|-----|-----|-----|----|-----------------------------|-----|-----|-----|-----|
|         |                    | 0                          | 1   | 2   | 3   | 4  | 0                           | 1   | 2   | 3   | 4   |
| 1.      | Moringa seeds      | 0                          | 1   | 2   | 3   | 4  | 0                           | 1   | 2   | 3   | 4   |
| 2.      | Maize              | 45                         | 45  | 45  | 45  | 45 | 55                          | 55  | 55  | 55  | 55  |
| 3.      | Deoiled ricebran   | 15                         | 15  | 15  | 15  | 15 | 11                          | 11  | 11  | 11  | 11  |
| 4.      | Soyabean meal      | 18                         | 18  | 18  | 18  | 18 | 13                          | 13  | 13  | 13  | 13  |
| 5.      | Groundnut cake     | 12                         | 11  | 10  | 9   | 8  | 12                          | 11  | 10  | 9   | 8   |
| 6.      | Fish meal          | 8                          | 8   | 8   | 8   | 8  | 7                           | 7   | 7   | 7   | 7   |
| 7.      | Mineral-mixture    | 2                          | 2   | 2   | 2   | 2  | 2                           | 2   | 2   | 2   | 2   |
| 8.      | Groundnut oil (ml) | 0.5                        | 0.4 | 0.3 | 0.2 | 0  | 0.5                         | 0.5 | 0.4 | 0.3 | 0.3 |

offered up to 3 weeks of age and thereafter experimental finisher rations were offered up to 6 weeks of age with and without supplementation of acidifier to respective groups.

## 2.6. Performance parameters

### 2.6.1. Feed consumption (g)

Weighed amounts of designated types and quantities of feed

were fed to the experimental chicks. The leftover residue was determined to estimate the feed consumption on dry matter basis.

### 2.6.2. Weekly body weight (g)

The body weight of the experimental broilers was recorded at the beginning of the experiment as well as weekly to

Table 2: Nutrient composition of experimental starter ration (on % DM basis)

| Treatments                  | 0       | 1       | 2       | 3       | 4       |
|-----------------------------|---------|---------|---------|---------|---------|
| DM                          | 89      | 89.01   | 89.03   | 89.04   | 89.06   |
| OM                          | 91.43   | 91.45   | 91.47   | 91.49   | 91.51   |
| CP                          | 22.81   | 22.83   | 22.85   | 22.87   | 22.89   |
| EE                          | 3.01    | 3.15    | 3.29    | 3.43    | 3.57    |
| CF                          | 6.11    | 6.16    | 6.22    | 6.27    | 6.32    |
| TA                          | 6.57    | 6.55    | 6.53    | 6.51    | 6.49    |
| NFE                         | 50.5    | 50.32   | 50.15   | 49.97   | 49.8    |
| ME (kcal kg <sup>-1</sup> ) | 2924.91 | 2921.79 | 2918.67 | 2915.56 | 2903.49 |

DM: dry matter; OM: Organic matter; CP: Crude protein; EE: Ether extract; CF: Crude fiber; TA: Total ash; NFE: Nitrogen free extract; ME: Metabolizable energy

Table 3: Nutrient composition of experimental finisher ration (on % DM basis)

| Treatments                  | 0       | 1       | 2       | 3       | 4       |
|-----------------------------|---------|---------|---------|---------|---------|
| DM                          | 89.2    | 89.22   | 89.23   | 89.25   | 89.26   |
| OM                          | 92.23   | 92.25   | 92.27   | 92.29   | 92.31   |
| CP                          | 20.37   | 20.39   | 20.41   | 20.43   | 20.45   |
| EE                          | 3.26    | 3.4     | 3.54    | 3.68    | 3.82    |
| CF                          | 5.21    | 5.26    | 5.31    | 5.37    | 5.42    |
| TA                          | 5.77    | 5.75    | 5.73    | 5.71    | 5.69    |
| NFE                         | 54.6    | 54.42   | 54.25   | 54.07   | 53.9    |
| ME (kcal kg <sup>-1</sup> ) | 3000.42 | 3006.25 | 3003.13 | 3000.02 | 3005.85 |

DM: Dry matter; OM: Organic matter; CP: Crude protein; EE: Ether extract; CF: Crude fiber; TA: Total ash; NFE: Nitrogen free extract; ME: Metabolizable energy

assess the body weight change and the growth pattern due to dietary regimens. The weighing of the birds was done in the early hours of the day before feeding, using an electronic weighing balance.

#### 2.6.3. Weekly body weight gain (g)

Live weight gain at weekly intervals was calculated from the difference in body weight attained between the two consecutive weeks.

#### 2.6.4. Average daily body weight gain (ADG)

ADG in grams was estimated by dividing the total body weight gain by the number of days.

#### 2.6.5. Weekly feed conversion ratio

Feed conversion ratio (FCR) was calculated by dividing the cumulative feed intake by body weight gain of chicks for every week.

#### 2.6.6. Performance index

To take into account the feed efficiency as well as the growth rate, an index was obtained for each treatment by dividing the average weight gained by the feed conversion ratio.

#### 2.6.7. Protein efficiency ratio

PER was calculated by dividing the weight gain by the protein consumed.

#### 2.6.8. Percent mortality

Regular observation was carried out to record the occurrence of death in experimental broiler chicks to estimate mortalities relative to the experimental group. Mortality rate (%) was calculated from the records of dead birds up to the end of the study against the total number of birds on a treatment basis.

#### 2.6.9. Balance study

Digestibility of dry matter, crude protein, crude fiber and nitrogen balance study was conducted using 6 chicks

from each group for 5 days at the end of the feeding trial. Digestibility of nutrients was estimated by the methods of Anonymous (2005). A nitrogen balance study was undertaken to assess the retention level of the above nutrient.

#### 2.7. Statistical analysis

Data collected during the present investigation were subjected to statistical analysis by adopting appropriate methods of analysis of variance as described by Snedecor and Cochran (2004). The significance of mean differences was tested by Duncan's New Multiple Range Test (Duncan's Range Test) as modified by Kramer (1957).

### 3. RESULTS AND DISCUSSION

The effect of utilization of MOSM with or without supplementation of acidifier on performance parameters of broiler chicks has been presented in Tables 4 and 5.

#### 3.1. Feed intake

No significant ( $p>0.05$ ) difference was observed in the feed intake of broiler chicks on dietary inclusion of MOSM alone up to 4% level. The present finding was in agreement with Ng'ambi et al. (2017) who reported that *M. oleifera* seed meal inclusion did not improve feed intake of broiler chickens. Further, El-Abbas (2025) demonstrated that 2.0 and 3.0 cm<sup>3</sup> L-1 ZnNPs-MLPE supplementation did not show any significant difference in feed intake between the treated groups and the control.

The results of present experiment differ from Ashong and Brown (2011), who stated that, when using diets with different levels of inclusion of Moringa leaves flour in White Leghorn chickens from 7 days up to 5 weeks; with substitution levels of Moringa flour at 0% (control group), 10%, 20% and 30%, found significant differences in feed intake. Sukria et al., 2024 also reported that the dietary moringa supplementation decreased feed intake ( $p<0.05$ )

Table 4: Effect of MOSM with or without supplementation of acidifier on growth performance in broiler chicks

| Treatments         | MOSM % | Acidifier | Feed Intake (g bird <sup>-1</sup> ) | Body weight (g bird <sup>-1</sup> ) | Body weight gain (g bird <sup>-1</sup> ) |
|--------------------|--------|-----------|-------------------------------------|-------------------------------------|------------------------------------------|
| Interaction effect |        |           |                                     |                                     |                                          |
| T <sub>1</sub>     | 0      | -         | 3670.40±56.04                       | 2179.22 <sup>a</sup> ±48.04         | 2136.08±110.40                           |
| T <sub>2</sub>     | 1      | -         | 3730.70±64.70                       | 2239.76 <sup>a</sup> ±32.62         | 2196.73±31.87                            |
| T <sub>3</sub>     | 2      | -         | 3942.10±1.60                        | 2387.90 <sup>bcd</sup> ±39.79       | 2344.80±41.44                            |
| T <sub>4</sub>     | 3      | -         | 3693.00±3.23                        | 2423.97 <sup>cde</sup> ±42.04       | 2299.87±90.03                            |
| T <sub>5</sub>     | 4      | -         | 3533.60±15.20                       | 2569.74 <sup>f</sup> ±40.27         | 2526.60±41.11                            |
| T <sub>6</sub>     | 0      | Acidifier | 3679.00±57.50                       | 2262.14 <sup>ab</sup> ±34.93        | 2219.0±74.35                             |
| T <sub>7</sub>     | 1      | Acidifier | 3386.40±19.90                       | 2368.49 <sup>bcd</sup> ±30.51       | 2325.32±62.39                            |
| T <sub>8</sub>     | 2      | Acidifier | 3587.80±10.84                       | 2301.50 <sup>abc</sup> ±26.86       | 2258.24±29.22                            |
| T <sub>9</sub>     | 3      | Acidifier | 3897.10±30.17                       | 2456.07 <sup>def</sup> ±30.90       | 2412.84±64.91                            |
| T <sub>10</sub>    | 4      | Acidifier | 3672.80±1.79                        | 2507.54 <sup>ef</sup> ±26.75        | 2464.30±26.64                            |

Table 4: Continue...

| Treatments         | MOSM %        | Acidifier                   | Average daily gain (g bird <sup>-1</sup> ) | FCR                       | PI                        | PER                           |                           |
|--------------------|---------------|-----------------------------|--------------------------------------------|---------------------------|---------------------------|-------------------------------|---------------------------|
| T <sub>1</sub>     | 0             | -                           | 50.86±1.15                                 | 1.86±0.859                | 1090.70±1.998             | 2.59±0.260                    |                           |
| T <sub>2</sub>     | 1             | -                           | 52.31±0.78                                 | 1.76±0.058                | 1208.80±1.007             | 2.70±0.090                    |                           |
| T <sub>3</sub>     | 2             | -                           | 55.83±0.96                                 | 1.69±0.07                 | 1400.40±1.208             | 2.83±0.175                    |                           |
| T <sub>4</sub>     | 3             | -                           | 54.76±1.01                                 | 1.61±0.009                | 1439.70±79.405            | 2.97±0.215                    |                           |
| T <sub>5</sub>     | 4             | -                           | 60.16±0.97                                 | 1.40±0.002                | 1806.60±12.250            | 3.38±0.005                    |                           |
| T <sub>6</sub>     | 0             | Acidifier                   | 52.84±0.83                                 | 1.72±0.056                | 1250.30±1.017             | 2.77±0.090                    |                           |
| T <sub>7</sub>     | 1             | Acidifier                   | 55.37±0.73                                 | 1.51±0.087                | 1495.20±28.845            | 3.15±0.180                    |                           |
| T <sub>8</sub>     | 2             | Acidifier                   | 53.77±0.64                                 | 1.59±0.114                | 1421.50±21.               | 2.98±0.030                    |                           |
| T <sub>9</sub>     | 3             | Acidifier                   | 57.45±1.22                                 | 1.62±0.009                | 1493.90±28.845            | 2.93±0.063                    |                           |
| T <sub>10</sub>    | 4             | Acidifier                   | 58.68±0.64                                 | 1.50±0.118                | 1664.30±1.817             | 3.19±0.250                    |                           |
| <b>Main effect</b> |               |                             |                                            |                           |                           |                               |                           |
| <b>MOSM%</b>       |               |                             |                                            |                           |                           |                               |                           |
| 0                  | 3674.70±32.87 | 2221.40 <sup>a</sup> ±34.92 | 2178.26 <sup>a</sup> ±74.35                | 51.86 <sup>a</sup> ±0.83  | 1.79 <sup>b</sup> ±0.089  | 1170.50 <sup>a</sup> ±1.024   | 2.68 <sup>a</sup> ±0.123  |
| 1                  | 3558.00±1.03  | 2304.12 <sup>b</sup> ±30.50 | 2261.02 <sup>ab</sup> ±62.39               | 53.83 <sup>ab</sup> ±0.73 | 1.64 <sup>ab</sup> ±0.083 | 1352.00 <sup>ab</sup> ±1.141  | 2.93 <sup>ab</sup> ±0.153 |
| 2                  | 3764.90±1.22  | 2344.70 <sup>b</sup> ±26.86 | 2301.52 <sup>b</sup> ±29.22                | 54.80 <sup>b</sup> ±0.64  | 1.63 <sup>ab</sup> ±0.052 | 1410.90 <sup>ab</sup> ±50.520 | 2.90 <sup>ab</sup> ±0.085 |
| 3                  | 3794.90 ±1.45 | 2440.29 <sup>c</sup> ±30.89 | 2356.35 <sup>b</sup> ±64.91                | 56.10 <sup>b</sup> ±1.21  | 1.61 <sup>ab</sup> ±0.046 | 1466.80 <sup>b</sup> ±37.872  | 2.95 <sup>ab</sup> ±0.063 |
| 4                  | 3602.70±83.52 | 2538.63 <sup>d</sup> ±26.74 | 2495.45 <sup>c</sup> ±26.64                | 59.42 <sup>c</sup> ±0.64  | 1.45 <sup>a</sup> ±0.055  | 1735.40 <sup>c</sup> ±84.945  | 3.28 <sup>b</sup> ±0.115  |
| <b>Acidifier</b>   |               |                             |                                            |                           |                           |                               |                           |
| With-              | 3713.70±70.66 | 2362.98±21.83               | 2303.77±41.22                              | 54.86±0.65                | 1.66±0.064                | 1389.20±90.636                | 2.89±0.107                |
| out                |               |                             |                                            |                           |                           |                               |                           |
| With               | 3644.40±61.90 | 2380.01±20.07               | 2336.80±30.86                              | 55.64±0.48                | 1.59±0.035                | 1465.00±59.841                | 3.00±0.070                |
| <b>Probability</b> |               |                             |                                            |                           |                           |                               |                           |
| Inter-<br>action   | NS            | S <sup>**</sup>             | NS                                         | NS                        | NS                        | NS                            | NS                        |
| MOSM               | NS            | S <sup>**</sup>             | S <sup>**</sup>                            | S <sup>**</sup>           | S <sup>*</sup>            | S <sup>**</sup>               | S <sup>*</sup>            |
| Acid-<br>ifier     | NS            | NS                          | NS                                         | NS                        | NS                        | NS                            | NS                        |

a, b, c Means in the same column with different superscripts are significantly different; S\*: Significant at  $p<0.05$ ; S<sup>\*\*</sup>: Significant at  $p<0.01$ ; NS: Non-significant

when *Moringa oleifera* was added in the diet of the broiler chickens. Similarly, the supplementation of acidifier in the diet did not show any significant ( $p<0.05$ ) effect on feed intake in broiler chicks. These results corroborate well with studies of Akbari et al. (2004) and Aksu et al. (2007) who recorded no significant effect on feed intake due to the addition of organic acids in the diet, but do not correspond with the findings of Lokhande (2005) and Abdel-Fattah et al. (2008) noticed improvement in feed intake due to supplementation of organic acids. The interaction of MOSM and acidifier revealed no significant difference between control (T<sub>1</sub>) and treatment groups with or without acidifier supplementation.

### 3.2. Body weight

Body weight differed significantly in all weeks of the trial

period between the control (0% MOSM) and treatment groups on dietary inclusion of MOSM up to 4% level. The supplementation of acidifier showed no significant difference ( $p>0.05$ ) in body weight between the control (without acidifier) and acidifier-supplemented group of broiler chicks. The interaction of MOSM and acidifier revealed a significant ( $p<0.01$ ) difference in body weight between the control (T<sub>1</sub>) and dietary treatments of MOSM with or without acidifier supplementation groups. The results of the present study are in agreement with the findings of Mousa et al. (2016) who found that all levels of GMOS (0.25, 0.50, and 0.75%) resulted in significantly increased body weight at all periods of the experiment (14, 28, and 42 days) compared to the control group. This may be attributed to birds fed GMOS-based diets adequately

Table 5: Effect of MOSM with or without supplementation of acidifier on nutrients digestibility in broiler chicks

| Treatments                | MOSM % | Acidifier | N balance                 | DMD%                       | CPD%                       | CFD%                       |
|---------------------------|--------|-----------|---------------------------|----------------------------|----------------------------|----------------------------|
| <u>Interaction effect</u> |        |           |                           |                            |                            |                            |
| T <sub>1</sub>            | 0      | -         | 2.37 <sup>bcd</sup> ±0.06 | 75.44 <sup>bcd</sup> ±1.46 | 84.45 <sup>cde</sup> ±1.66 | 46.01 <sup>a</sup> ±4.94   |
| T <sub>2</sub>            | 1      | -         | 2.29 <sup>ab</sup> ±0.04  | 77.73 <sup>cde</sup> ±0.46 | 82.08 <sup>bcd</sup> ±0.46 | 58.76 <sup>bcd</sup> ±0.51 |
| T <sub>3</sub>            | 2      | -         | 2.32 <sup>ab</sup> ±0.03  | 78.86 <sup>cde</sup> ±1.69 | 81.58 <sup>abc</sup> ±0.88 | 61.05 <sup>cd</sup> ±0.79  |
| T <sub>4</sub>            | 3      | -         | 2.43 <sup>cd</sup> ±0.05  | 76.91 <sup>cd</sup> ±1.57  | 80.41 <sup>abc</sup> ±1.14 | 59.01 <sup>bcd</sup> ±1.07 |
| T <sub>5</sub>            | 4      | -         | 2.87 <sup>f</sup> ±0.03   | 81.07 <sup>e</sup> ±1.38   | 85.54 <sup>d</sup> ±0.27   | 63.76 <sup>d</sup> ±1.40   |
| T <sub>6</sub>            | 0      | Acidifier | 2.24 <sup>a</sup> ±0.05   | 70.57 <sup>a</sup> ±1.45   | 77.81 <sup>a</sup> ±1.76   | 54.51 <sup>bc</sup> ±3.06  |
| T <sub>7</sub>            | 1      | Acidifier | 2.32 <sup>ab</sup> ±0.03  | 80.44 <sup>de</sup> ±0.96  | 83.31 <sup>cd</sup> ±1.01  | 59.9 <sup>bcd</sup> ±0.96  |
| T <sub>8</sub>            | 2      | Acidifier | 2.46 <sup>d</sup> ±0.04   | 77.44 <sup>cde</sup> ±0.44 | 84.08 <sup>cd</sup> ±0.79  | 53.67 <sup>b</sup> ±1.54   |
| T <sub>9</sub>            | 3      | Acidifier | 2.47 <sup>d</sup> ±0.03   | 72.82 <sup>ab</sup> ±1.08  | 78.81 <sup>ab</sup> ±0.61  | 54.40 <sup>bc</sup> ±1.16  |
| T <sub>10</sub>           | 4      | Acidifier | 2.70 <sup>e</sup> ±0.03   | 78.18 <sup>cde</sup> ±1.04 | 85.35 <sup>d</sup> ±0.80   | 55.13 <sup>bc</sup> ±1.89  |
| <u>Main effect</u>        |        |           |                           |                            |                            |                            |
| <u>MOSM%</u>              |        |           |                           |                            |                            |                            |
| 0                         |        |           | 2.30 <sup>a</sup> ±0.04   | 73.0 <sup>a</sup> ±1.44    | 81.12 <sup>a</sup> ±1.76   | 50.26 <sup>a</sup> ±3.06   |
| 1                         |        |           | 2.30 <sup>a</sup> ±0.02   | 79.08 <sup>c</sup> ±0.95   | 82.69 <sup>ab</sup> ±1.0   | 59.33 <sup>b</sup> ±0.96   |
| 2                         |        |           | 2.39 <sup>ab</sup> ±0.03  | 78.14 <sup>b</sup> ±0.43   | 82.83 <sup>ab</sup> ±0.79  | 57.35 <sup>b</sup> ±1.53   |
| 3                         |        |           | 2.44 <sup>b</sup> ±0.03   | 74.86 <sup>ab</sup> ±1.08  | 79.61 <sup>a</sup> ±0.60   | 56.70 <sup>b</sup> ±1.16   |
| 4                         |        |           | 2.78 <sup>c</sup> ±0.04   | 79.62 <sup>c</sup> ±1.04   | 85.44 <sup>b</sup> ±0.80   | 59.44 <sup>b</sup> ±1.89   |
| <u>Acidifier</u>          |        |           |                           |                            |                            |                            |
| Without                   |        |           | 2.46±0.06                 | 78.0 <sup>a</sup> ±0.63    | 82.81±0.67                 | 57.72±1.70                 |
| With                      |        |           | 2.44±0.04                 | 75.89 <sup>b</sup> ±1.0    | 81.87±0.88                 | 55.52±0.87                 |
| <u>Probability</u>        |        |           |                           |                            |                            |                            |
| Interaction               |        |           | S <sup>**</sup>           | S <sup>*</sup>             | S <sup>*</sup>             | S <sup>**</sup>            |
| MOSM                      |        |           | S <sup>**</sup>           | S <sup>**</sup>            | S <sup>**</sup>            | S <sup>**</sup>            |
| Acidifier                 |        |           | NS                        | S <sup>*</sup>             | NS                         | NS                         |

a, b, c Means in the same column with different superscripts are significantly different; S\*: Significant at  $p<0.05$ ; S\*\*: Significant at  $p<0.01$ ; NS: Non-significant

utilizing the nutrients they consumed as *Moringa oleifera* seeds are good source of fats, proteins and minerals (Campaore et al., 2011). Also, these results are in agreement with Ochi et al. (2015) who mentioned that the inclusion of *Moringa oleifera* seed powder @ 0.5, 1, and 2% in the diet of the broilers significantly ( $p\leq 0.05$ ) enhanced their body weight. El-Abbasy (2025) demonstrated that 2.0 and 3.0 cm<sup>3</sup> L-1 ZnNPs-MLPE supplementation significantly enhanced live body weight (LBW) and weight gain (BWG). Contrary to our findings, Hassan et al., 2017 found that birds from the control group showed significantly ( $p<0.05$ ) higher body weight followed by 10, 15, 20 and 25% MOSM level in broiler's feed.

No effect of acidifier supplementation on body weight was recorded in the present study, which corroborates well with

the results of Akbari et al. (2004) and Garcia et al. (2007) but does not fall in line with the results of Abdel-Fattah (2008), who observed improvement in body weight due to organic acid supplementation.

### 3.3. Body weight gain

The body weight gain (BWG) differed significantly among the different treatment groups of MOSM. The overall weekly body weight gain was significantly ( $p<0.01$ ) higher in 4% level of MOSM which was followed by 3%, 2%, 1% and 0% MOSM supplemented groups. The result was in line with the finding of Olugbemi et al. (2010) who mentioned that the inclusion of *Moringa oleifera* leaf meal in the diet of the broilers significantly ( $p<0.05$ ) enhanced their weight gain at 1% level which was significantly higher than the control. Abbas and Mohamed, (2012) also observed that

the addition of *M. oleifera* undecorticated seed powder also had significant beneficial effects on weight gain in broilers. These results are also in harmony with the findings of Mousa et al. (2016) who reported that all graded levels of GMOS resulted in a significant increase in BWG compared to the control group. The improved weight gain of birds fed on GMOS compared to the control group may be due to *Moringa oleifera* seeds which are a good source of fat, protein, antioxidants and minerals (Campaore et al., 2011). It may also be due to the presence of bioactive components causing greater feed utilization resulting in improved growth (Arif et al., 2019). In contrast, Liaqat et al. (2016) did not observe any significant differences ( $p>0.05$ ) in weight gain in all treatment groups of broilers when fed on MOLP.

The results regarding use of acidifier did not reveal any effect on body weight gain and are contrary to the observations of Lokhande (2005) and Shendare et al. (2007) reported increase in body weight gain as a result of feeding of acidifier but fall very well in line with the findings of Ozturk et al. (2004) and Garcia et al. (2007) also noticed no significant effect of addition of organic acids in the diet of broilers on body weight gain.

Further, the interaction of MOSM and acidifier did not show any significant ( $p>0.05$ ) effect in BWG between control ( $T_1$ ) and treatment groups with or without supplementation of acidifier. However, a numerically higher BWG was observed in the  $T_5$  group. Contrary to the present finding, Wahab et al. (2020) reported that birds fed MOSP @ 0.75% with phytase had significantly the highest values of live body weight gain.

#### 3.4. Average daily weight gain

The ADG was significantly ( $p<0.01$ ) higher in the 4% level of MOSM, which was followed by 3%, 2%, 1%, and 0% MOSM supplemented groups. The results of feeding different levels of MOSM indicate that MOSM improved the growth performance of broilers, which is consistent with Ayssiwede et al. (2011) and Ayo-Ajasa et al. (2016) who reported that leaf meal added to broiler diets significantly increased the average daily weight gain of the broilers. Elbashier and Ahmed, (2016) also reported in their study that supplementation of 0%, 2%, 4% and 5% MOLM kg<sup>-1</sup> feed daily for 21 days (finisher diet) significantly improved total weight gain in broilers. The results regarding the use of acidifier did not reveal any effect on average daily gain and are in accordance with Jung et al. (2008) who found that the addition of galacto-oligosachharides and *Bifidobacterium lactis* did not affect daily weight gain of broiler chickens. Contrary to this, Dizaji et al. (2012) and Gao et al. (2021) reported that adding acidifier to the diet of broiler chickens improved the ADG.

Further, the interaction of MOSM and acidifier in ADG

did not show a significant effect in control ( $T_1$ ) and the treatment groups.

#### 3.5. Feed conversion ratio

Among the MOSM supplemented groups, better FCR was observed in 4% MOSM supplemented group which was non-comparable to the 1, 2 and 3% MOSM supplemented groups. The present results are in agreement with Riry et al. (2016) who reported significantly ( $p<0.01$ ) better feed conversion ratio in MOSM supplemented groups than control group. Mousa et al. (2016) reported that the FCR was significantly improved by using all levels of GMOS in all periods of the experiment compared to the control group. Moreover, Sukria et al., 2024 also found that the dietary moringa supplementation improved FCR ( $p<0.05$ ) when *Moringa oleifera* was added in the diet of the broiler chickens. This improvement in FCR may be attributed to the rich content of nutrients in *Moringa oleifera* seeds. This suggests that birds fed *Moringa oleifera* leaf meal-based diets had better utilization potential of the nutrients probably because of the increased bulkiness as the inclusion level increased. A low FCR is a good indication of high-quality feed (Hascik et al., 2010). On the other hand, El-Abbasy (2025) showed that 2.0 and 3.0 cm<sup>3</sup> l<sup>-1</sup> ZnNPs-MLPE supplementation did not show any significant difference in feed conversion ratio (FCR).

The supplementation of acidifier in the diet did not reveal any significant ( $p>0.05$ ) difference in FCR weekly between the acidifier-supplemented group compared to group without acidifier supplementation. However, a numerically better FCR was observed in acidifier supplemented group in the overall trial period of 42 days. The non-significant effect observed for the effect of acidifier in the present study has also been noticed earlier by Akbari et al. (2004) and Dizaji et al. (2012). However, Lende et al. (2018) reported significantly better FCR in the gut acidifier supplemented group fed at 0.1 and 0.05% in the starter and finisher broiler diet.

No significant ( $p>0.05$ ) difference was observed in FCR between control ( $T_1$ ) and other dietary treatment groups when observing the interaction of MOSM and acidifier. However, a numerically better FCR was found in the  $T_5$  group as compared to the control ( $T_1$ ) and other dietary treatments. Contrary to the present finding, Wahab et al. (2020) showed that birds fed MOSP at 0.75% with phytase had significantly best feed conversion ratio.

#### 3.6. Performance index

In the overall period of 42 days, the PI was significantly higher in 4% MOSM supplemented group and lower in all other treatments groups. The mean value of PI in the 0, 1%, 2% and 3% MOSM supplemented groups was not comparable to each other. The present finding is in

accordance with Ibrahim et al. (2014) who reported that productive performances of rabbits were significantly improved with increasing levels of *Moringa peregrine* seeds (MPS) in the diet. Contrary to this, the present finding is not in agreement with Eldeeb et al. (2014) who reported that feeding of broiler chicks with dietary levels (0%, 2% and 4%) of MOLM did not reveal any significant difference in performance index.

The supplementation of acidifier in the diet did not show any significant ( $p>0.05$ ) difference in PI between the control group without acidifier and the acidifier-supplemented group. Similarly, the interaction of MOSM and acidifier did not show any significant ( $p>0.05$ ) difference in PI between control ( $T_1$ ) and treatment groups with or without acidifier supplementation.

### 3.7. Protein efficiency ratio

In the overall trial period of 42 days, the PER was significantly ( $p<0.05$ ) higher in 4% level of MOSM supplemented group as compared to all other treatment groups. This result is also in agreement with the finding of Ahmad and Abbas (2016) who reported that the protein efficiency ratio for birds fed on decorticated moringa (DCM) was improved during all phases when compared to control and those fed zigbir and an undecorticated supplemented diet. In contrast, Okosun et al. (2017) reported that the protein efficiency ratio was not significantly affected ( $p>0.05$ ) by the moringa-based dietary treatments. Amadi (2016) reported that a decrease in values of PER occurs with increasing levels of *Moringa oleifera* seed meal in diets.

The supplementation of acidifier in the diet did not show any significant ( $p>0.05$ ) difference in PER between the control group without supplementation of acidifier and the acidifier-supplemented group. The findings of the present study are in agreement with Fatufe and Matanmi (2011) who reported that organic acids alone and in combination with probiotics did not affect the protein efficiency ratio in cockerels.

Further, the interaction of MOSM and acidifier did not show any significant ( $p>0.05$ ) difference in PER between control ( $T_1$ ) and treatment groups of MOSM with or without supplementation of acidifier.

### 3.8. Percent mortality

The overall mortality in broilers during the experimental period was 2%; the mortality was well within normal limits during the entire period of the experiment. However, as confirmed by post-mortem examination, mortality was not attributed to experimental diets.

### 3.9. Nitrogen balance

Regarding the balance of nitrogen as  $\text{g d}^{-1}$ , a significantly ( $p<0.01$ ) higher nitrogen balance was observed in 4%

MOSM supplementation group as compared to the control and all other treatment groups. The highest nitrogen balance was found to be  $2.78 \text{ g d}^{-1}$  in the 4% MOSM supplementation group and the lowest was  $2.30 \text{ g d}^{-1}$  in the control and 1% MOSM supplementation groups, respectively. The present finding is in agreement with Ng'ambi et al. (2017) who found that Nitrogen (N) retention of female Ross 308 broiler chickens was optimized at a seed meal inclusion level of  $11.50 (r^2=0.286) \text{ g kg}^{-1}$  DM feed. In contrast to this, Amadi (2016) reported that daily retained nitrogen and nitrogen retention coefficient decreased in values following an increase (0%, 5%, 10% and 15%) in MOSM inclusion in diets.

The supplementation of acidifier showed a non-significant ( $p>0.05$ ) difference in nitrogen balance between the control group (without acidifier) and acidifier supplementation. While, the findings of Mahfudz et al. (2019) reported that the dietary inclusion of citric acid significantly ( $p<0.05$ ) decreased nitrogen intake as an impact of slightly reduced feed consumption.

The interaction of MOSM and acidifier showed significant difference in nitrogen balance between control ( $T_1$ ) and different treatment groups of MOSM with or without acidifier supplementation. Significantly ( $p<0.01$ ) higher nitrogen balance was observed in  $T_5$  and  $T_{10}$  groups as compared to control ( $T_1$ ) and all other treatment groups with or without supplementation of acidifier.

### 3.10. Per cent nutrient digestibility

It was found that the percent dry matter digestibility, crude protein digestibility and crude fiber digestibility were significantly differed between control and MOSM supplemented groups. The mean value of DMD was significantly ( $p<0.01$ ) higher in 4% MOSM supplemented group which is followed by 1% and 2% MOSM supplemented group and lower value of DMD was found in 0% MOSM and 3% MOSM supplemented groups. The CPD was significantly ( $p<0.01$ ) higher in 4% level of MOSM supplemented group as compared to control (0% MOSM) and all other MOSM supplemented groups. However, the digestibility of CP in 4% MOSM supplemented group neither different from control (0% MOSM) nor from 1, 2 and 3% MOSM supplemented treatment groups, respectively. The CFD was significantly ( $p<0.01$ ) higher in all treatment groups of MOSM as compared to 0% MOSM supplemented group. These findings agreed with the earlier report of Fahey et al. (2001) that Moringa seed enhances nutrient digestibility and improves fiber retention in broilers. Alagbe (2017) reported that protein retention and fiber retention were significantly ( $p<0.05$ ) influenced by the inclusion of MLMAZP across the treatments. Contrary to this result, Egbu et al. (2022) found that crude protein

and neutral detergent fibre digestibility linearly decreased as Moringa seed extract levels increased.

Regarding the supplementation of acidifier, the treatment group receiving acidifier showed a significant ( $p<0.05$ ) difference from the control group only in dry matter digestibility (DMD), while no significant ( $p>0.05$ ) differences were observed in the digestibility of other nutrients. The acidifier-supplemented group recorded a significantly ( $p<0.05$ ) higher mean value of DMD. Similarly, Ding et al. (2017) reported that supplementation with the acidifier Pro GIT SF3 significantly ( $p<0.05$ ) improved the apparent and total digestibility of dry matter. In contrast, Houshmand et al. (2011) and Biggs and Parsons (2008) observed that the addition of organic acids significantly ( $p<0.05$ ) improved protein digestibility compared with the control group.

The interaction of MOSM and acidifier showed significant difference between control ( $T_1$ ) and different treatment groups of MOSM with or without acidifier supplementation in the percent digestibility of dry matter, crude protein and crude fiber. The significantly ( $p<0.05$ ) higher percent of dry matter digestibility and crude protein digestibility were found in  $T_5$  group and lower in  $T_6$  group, respectively. The significantly ( $p<0.01$ ) higher percent crude fiber digestibility was observed in all treatment groups as compared to the  $T_1$  (control) group.

#### 4. CONCLUSION

The MOSM with or without using acidifier supplementation increased weight gain ( $p<0.05$ ) and improved feed conversion ratio and overall performance of the broiler chicks. *Moringa oleifera* seed meal could successfully replace groundnut cake in broiler diets up to 4%, either with or without acidifier supplementation. This replacement supported growth performance and enhanced feed utilization efficiency in broiler chicks.

#### 5. REFERENCES

- Abbas, Talha, E., Ahmed, Mohamed, E., 2012. Use of *Moringa oleifera* seeds in broilers' diet and its effects on the performance and carcass characteristics. International Journal of Applied Poultry Research 1, 1–4. doi: 10.3906/vet-1211-40.
- Abdel-Fattah, S.A., EI-Sanhouri, M.H., EI-Mednay, N.M. Abdel-Azeem, F., 2008. Thyroid activity, some blood constituents, organs morphology and performance of broiler chicks fed supplemental organic acids. International Journal of Poultry Science 7(3), 215–222. 10.3923/ijps.2008.215.222.
- Ahmad, M.E., Abbas, T.E., 2016. Response of broiler chicks to dietary Moringa seeds and Zigbir as natural growth promoters. Proceedings of 19th IASTEM International Conference, Kuala Lumpur, Malaysia, 3<sup>rd</sup> April 2016, ISBN 978-93-85973-86-4.
- Akbari, M.R., Kermanshahi, H., Kalidari, G.A., 2004. Effect of acetic acid administration in drinking water on performance, growth characteristics and ileal microflora of broiler chickens. Journal of Science and Technology of Agriculture and Natural Resources 8(3), 139–148. DOI: 20.1001.1.24763594.1383.8.3.12.7.
- Aksu, T., Ates, C.T., Erdogan, Z., Baytok, E., 2007. The response of broilers to dietary organic acid mixture. Indian Veterinary Journal 84(4), 385–387.
- Alabi, O.J., Ng'ambi, J.W., Mbajorgu, E.F., 2020. Aqueous Extract of moringa (*Moringa oleifera*) leaf (Aemol) on the growth, sensory and histology parameters of broiler chickens. Applied Ecology and Environmental Research 18(5), 6753–6764. [https://doi.org/10.1566/aeer/1805\\_67536764](https://doi.org/10.1566/aeer/1805_67536764).
- Alagbe, J.O., 2017. Studies on growth performance, nutrient utilization, and hematological characteristics of broiler chickens fed different levels of Azolla-*Moringa oleifera* mixture. Greener Journal of Agricultural Sciences 7(6), 145–156. <https://dx.doi.org/10.15580/GJAS.2017.6.081817107>.
- Amadi, E., 2016. Influence of *Moringa oleifera* seed meal on haematological and biochemical parameters of broiler chickens. American Journal of Life Science Research 4(4), 136–139. <https://dx.doi.org/10.21859/ajlsr-040405>.
- Anhawange, B.A., Ajibola, V.O., Oniye, S.J., 2004. Chemical studies of the seeds of *Moringa oleifera* (Lam.) and *Detarium microcarpum* (Guill. and Sperr). Journal of Biological Sciences 4, 711–715. <https://dx.doi.org/10.3923/jbs.2004.711.715>.
- Anonymous, 2005. Association of Official Analytical Chemists, Official Methods of Analysis, 18<sup>th</sup> ed., Washington, D.C. <https://doi.org/10.1002/0471740039.vec0284>.
- Anonymous, 2007. BIS, 2007. Requirement for chicken feeds. IS: 1374, Manak Bhawan, 9 Bahadurshah Zafar Marg, New Delhi-110001. <https://law.resource.org/pub/in/bis/S06/is.1374.2007.pdf>.
- Arif, M., Hayat, Z., Abd, M.E., Saeed, M., Imran, H.M., Alowaimer, A.N., Saadeldin, I.M., Taha, A.E., Swelum, A.A., 2019. Impacts of supplementing broiler diets with a powder mixture of black cumin, Moringa and chicory seeds. South African Journal of Animal Science 49(3). <http://dx.doi.org/10.4314/sajas.v49i3.17>.
- Ashong, J.O., Brown, D.L., 2011. Safety and efficacy of *Moringa oleifera* powder for growing poultry. Journal of Animal Science 1, 84–89.
- Ayo-Ajasa, O.Y., Abiona, J.A., Fafiolu, A.O., Egbeyale,

- L.T., Njoku, C.P., Omotay, I.G., Odeyemi, A.Y., Abel, F.A.S., 2016. Performance characteristics of broilers fed graded levels of *Moringa oleifera* leaf meal. Malaysian Journal of Animal Science 19(1), 23–31.

Ayssiwede, S.B., Dieng, A., Bello, H., Chrysostome, C.A.A.M., Hane, M.B., Mankor, A., Dahouda, M., Houinato, M.R., Hornick, J.L., Missohou, A., 2011. Effects of *Moringa oleifera* (Lam.) leaves meal incorporation in diets on growth performance, carcass characteristics and economic results of growing indigenous Senegal chickens. Pakistan Journal of Nutrition 10(12), 1132–1145. <https://doi.org/10.3923/pjn.2011.1132.1145>.

Biggs, P., Parsons, C.M., 2008. The effects of several organic acids on growth performance, nutrient digestibility, and cecal microbial populations in young chicks. Poultry Science 87, 2581–2589.

Compaore, W.R., Nikiema, P.A., Bassale, H.I.N., Savadogo, A., Mouecoucou, J., Hounhouigan, D.J., Traore, S.A., 2011. Chemical composition and anti-oxidative properties of seed of *Moringa oleifera* and pulps of *Parkia biglobosa* and *Adansonia digitata*, commonly used in food fortification in Burkina Faso. Current Research Journal of Biological Sciences 3(1), 64–72.

Dahot, M.U., 1988. Vitamin contents of the flowers of *Moringa oleifera*. Pakistan Journal of Biochemistry 21(1–2), 21–24. Available at: <http://indianmedicine.eldoc.ub.rug.nl/id/eprint/34374>.

Dibner, J.J., Buttin, P., 2002. Use of organic acids as a model to study the impact of gut microflora on nutrition and metabolism. Journal of Applied Poultry Research 11, 453–463. <https://doi.org/10.1093/japr/11.4.453>.

Ding, X., Yang, C.W., Yang, Z.B., Yang, W.R., Jiang, S.Z., Wen, K.E.Y., 2017. Effects of feed acidifiers on growth performance, caecum microflora and nutrient and energy utilisation in broilers. European Poultry Science 81, 1–13. <https://doi.org/10.1399/eps.2017.180>.

Dizaji, B.R., Hejazi, S., Zakeri, A., 2012. Effects of dietary supplementations of prebiotics, probiotics, synbiotics and acidifiers on growth performance and organ weights of broiler chicken. European Journal of Experimental Biology 2(6), 2125–2129. <https://doi.org/10.14202/vetworld.2016.313–319>.

Egbu, C.F., Motsei, L.E., Yusuf, A.O., Mnisi, C.M., 2022. Evaluating the efficacy of *Moringa oleifera* seed extract on nutrient digestibility and physiological parameters of broiler chickens. Agriculture 12, 1102. <https://doi.org/10.3390/agriculture12081102>.

El-Abbasy, M.M., Aldhalmi, A.K., Ashour, E.A., Bassiony, S.S., Kamal, M., Alqhtani, A.H., Abou-Kassem, D.E., Elolimy, A.A., Abd El-Hack, M.E., Swelum, A.A., 2025. Enhancing broiler growth and carcass quality: impact of diets enriched with *Moringa oleifera* leaf powder conjugated with zinc nanoparticles. Poultry Science 104(1), 104519. <https://doi.org/10.1016/j.psj.2024.104519>.

Elbashier, O.M., Ahmed, H.E., 2016. The effect of feeding different levels of *Moringa oleifera* leaf meal on the performance and some blood parameters of broilers. International Journal of Science and Research 5(3), 632–635. <https://www.ijsr.net/getabstract.php?paperid=NOV161702>.

Eldeeb, A., Mariam, Essa, N.M., Younis, M., Saleh, A.M., 2014. Utilization of *Moringa oleifera* leaves meal as a non-traditional feedstuff on productive performance of broiler chicks. Mediterranean Poultry Summit of the WPSA. Available at: [www.aun.edu.eg/uploaded\\_full\\_txt/21001\\_full\\_txt.doc](http://www.aun.edu.eg/uploaded_full_txt/21001_full_txt.doc).

El-Deep, M.H., M.A.O., Dawood, M.H., Assar, Ijiri, D., Ohtsuka, A., 2019. Dietary *Moringa oleifera* improves growth performance, oxidative status, and immune related gene expression in broilers under normal and high temperature conditions. Journal of Thermal Biology 82, 157–163. <https://doi.org/10.1016/j.jtherbio.2019.04.016>.

Fahey, J., Zackmann, A., Talalay, P., 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Indian Journal of Animal Nutrition 59, 200–237. [https://doi.org/10.1016/s0031-9422\(00\)00316-2](https://doi.org/10.1016/s0031-9422(00)00316-2).

Fatufe, A.A., Matanmi, I.O., 2011. Effect of probiotics, organic acids or their mix on the growth performance of starting cockerels. Archivos de Zootecnia 60(229), 149–152. ISSN: 0004-0592.

Ferreira, P.M.P., Farias, D.F., Oliveira, J.T.A., Carvalho, A.F.U., 2008. *Moringa oleifera* compounds and nutritional potential. Revista de Nutrição, 21(4). <https://doi.org/10.1590/S1415-52732008000400007>.

Gao, C., Shi, H., Xie, W., Zhao, L., Zhang, J., Ji, C., Ma, Q., 2021. Dietary supplementation with acidifiers improves the growth performance, meat quality and intestinal health of broiler chickens. Animal Nutrition 7(3), 762–769. doi: 10.1016/j.aninu.2021.01.005.

García, V., Catala-Gregori, P., Hernandez, F., Megias, M.D., Madrid, J., 2007. Effect of formic acid and plant extracts on growth, nutrient digestibility, intestine mucosa morphology, and meat yield of broilers. Journal of Applied Poultry Research 11, 453–463. <https://doi.org/10.3382/japr.2006-00116>.

Hamidifard, M., Khalaji, S., Hedayati, M., Rajaei H.S., 2023. Use of condensed fermented corn extractives (liquid steep liquor) as a potential alternative for organic acids and probiotics in broiler ration. Italian Journal of Animal Science 22(1), 418–429. <https://doi.org/10.3382/ijas.2023.000000>.

- org/10.1080/1828051X.2023.2206420.
- Hascik, P., Kacaniova, M., Mihok, M., Pochop, J., Benczova, E., 2010. Performance of various broiler chicken hybrids fed with commercially produced feed mixtures. International Journal of Poultry Science 9(11), 1076–1082. <http://dx.doi.org/10.3923/ijps.2010.1076.1082>.
- Hassan, K.U., Khalique, A., Pasha, T.N., Naseer, T., Akram, M., Mahmood, S., Sahota, A.W.M., Saeed, I., Saleem, G., 2017. Influence of *Moringa oleifera* decorticated seed meal on broiler performance and immunity. Pakistan Veterinary Journal 37(1), 47–50.
- Houshmand, M., Azhar, K., Zulkifli, I., Bejo, M.H., Kamyab, A., 2011. Effects of non-antibiotic feed additives on performance, nutrient retention, gut pH, and intestinal morphology of broilers fed different levels of energy. Journal of Applied Poultry Research 20, 121–128. <https://doi.org/10.3382/japr.2010-00171>.
- Huyghebaert, G., Ducatelle, R., Van Immerseel, F., 2011. An update on alternatives to antimicrobial growth promoters for broilers. Veterinary Journal 187, 182–188. <https://doi.org/10.1016/j.tvjl.2010.03.003>.
- Ibrahim, N.H., Morsy, A.S., Ashgan, M.E., 2014. Effect of *Moringa peregrina* seeds on productive performance and hemato-biochemical parameters of growing rabbits. Journal of American Science 10(6), 7–12.
- Jung, S.J., Houde, R., Baurhoo, B., Zhao, X., Lee, B.H., 2008. Effects of galacto-oligosaccharides and a *Bifidobacterium lactis*-based probiotic strain on the growth performance and fecal microflora of broiler chickens. Poultry Science 87, 1694–1699. <https://doi.org/10.3382/ps.2007-00489>.
- Karnani, M., Sharma, V., Choudhary, S., Sharma, S., Saini, S., Manju, Pandey, A., 2020. Effect of curry (*Murraya koenigii*) leaf powder supplementation on performance of broiler chickens. Indian Journal of Poultry Science 53(3), 300–304. <http://dx.doi.org/10.5958/0974-8180.2018.00058.2>.
- Karnani, M., Sharma, V., Sharma, S., Choudhary, S., Saini, S., Manju, Singh, N., 2019. Effect of linseed oil supplementation on performance and carcass traits of broiler chickens. Indian Journal of Animal Production Management 35(1–2), 68–73. <https://epubs.icar.org.in/index.php/IJAPM/article/view/95626>.
- Khalafalla, M.M., Abdellatef, E., Dafalla, H.M., Nassrallah, A.A., Aboul-Enein, K.M., Lightfoot, D.A., El-Deeb, F.E., El-Shemy, H.A., 2010. Active principle from *Moringa oleifera* Lam. leaves effective against two leukemias and a hepatocarcinoma. African Journal of Biotechnology 9(49), 8467–8471. DOI: 10.5897/AJB10.996.
- Khalid, N., Sakhawat, S.F., Mehmood, H., 2021. Effects of *Moringa oleifera* leaf powder as feed additives on growth performance and blood parameters of broiler. Journal of Animal Health and Production 9(3), 271–276. <https://doi.org/10.17582/JOURNAL.JAHP/2021/9.3.271.276>.
- Kramer, C.Y., 1957. Extension of multiple range tests to group correlation adjusted means. Biometrics 13, 13–20. <https://doi.org/10.2307/3001469>.
- Lende, S.R., Kharkar, K.P., Raghuvanshi, D.S., Khati, B.M., Dhawale, S.P., Ganraj, K.S., 2018. Response of probiotic and gut acidifier on performance of broiler. Journal of Krishi Vigyan 7(1), 184–186. DOI: 10.5958/2349-4433.2018.00128.9.
- Liaqat, S., Mahmood, S., Ahmad, S., Kamran, Z., Koutoulis, K.C., 2016. Replacement of canola meal with *Moringa oleifera* leaf powder affects performance and immune response in broilers. Journal of Applied Poultry Research 25, 352–358. <http://dx.doi.org/10.3382/japr/pfw018>.
- Lokhande, D.Y., Ranade, A.S., Desai, D.N., Patil, M.B., Avari, P.E., Patwardhan, D.S., Adsul, A.P., Gaikwad, P.G., 2005. Comparative evaluation of prebiotic, probiotic and acidifier in broilers diets. Journal of Bombay Veterinary College 13, 17–19.
- Mahfudz, L.D., Sarjana, T.A., Kismiati, S., Muryani, R., Nasoetion, M.H., Suthama, N., 2019. Effectiveness of acidifier in broiler fed diet double step-down protein. IOP Conference Series: Earth and Environmental Science 518, (2020) 012012. <https://doi.org/10.1088/1755-1315/518/1/012012>.
- Mousa, M.A.M., Shata, F.H.R., Elklob, M.K., Moustafa, M.E.L., Youssef, H.S.F., Alghonimy, A.H., 2016. Effect of using germinated *Moringa oleifera* seeds on Japanese quail growth performance. Egyptian Poultry Science Journal 36(II), 561.
- Melaku, M., Zhong, R., Han, H., Wan, F., Yi, B., Zhang, H., 2021. Butyric and citric acids and their salts in poultry nutrition: Effects on gut health and intestinal microbiota. International Journal of Molecular Sciences 22(19), 10392. DOI: 10.3390/ijms221910392
- Ng'ambi, J.W., Molepo, L.S., Ginindza, M.M., 2017. Effect of dietary *Moringa oleifera* seed meal inclusion on performance and carcass quality of female Ross 308 broiler chickens. Indian Journal of Animal Research, 1–6. DOI: 10.18805/ijar.B-712.
- Ochi, E.B., Elbushra, M.E., Fatur, M., Abubakr, O., Ismail, H.A., 2015. Effect of *Moringa oleifera* Lam. seeds on the performance and carcass characteristics of broiler chickens. Journal of Natural Sciences Research 5(8), 66–72. ISSN 2225-0921.
- Okosun, S.E., Eguafoje, S.A., 2017. Growth performance, carcass response and cost-benefit analysis of cockerels

- fed graded levels of cassava (*Manihot esculenta*) grit supplemented with *Moringa oleifera* leaf meal. Animal Research International 14(1), 2619–2628. Available at: <https://www.unn.edu.ng/wpcontent/uploads/2015/10/8.-Okosun-and-Eguaoje-galley.pdf>.
- Okey, S.N., 2023. Alternative feed additives to antibiotics in improving health and performance in poultry and for the prevention of antimicrobials: A review. Nigerian Journal of Animal Science and Technology 6(1), 65–76. Available at: <http://njast.com.ng/index.php/home/article/view/243>.
- Olugbemi, T.S., Mutayoba, S.K., Lekule, F.P., 2010. Evaluation of *Moringa oleifera* leaf meal inclusion in cassava chip-based diets fed to laying birds. Livestock Research for Rural Development 22(118). Available at: <http://www.lrrd.org/lrrd22/6/olug22118.htm>.
- Ozturk, E., Yildirim, A., Eroglu, C., 2004. Effects of dietary organic acids on performance, carcass characteristics and gut flora of broiler chicks. International Journal of Biology and Biotechnology 1, 95–100.
- Riry, F.H., Shata, K.E., Moustafa, M.E.L., Mousa, M.A.M., Youssef, S.F., Alghonimy, A.H., 2016. Effect of using *Moringa oleifera* seed meal on Japanese quail performance during growing period. Proceedings of 9<sup>th</sup> International Poultry Conference, 7–10 November 2016, Hurghada, Red Sea, Egypt. Available at: <https://www.researchgate.net/publication/357256013>.
- Shendare, R., Mandlekar, S., Khati, B., Rajput, A., Gogle, M., Deshmukh, S., 2007. Effect of acidic and alkaline water on body weight gain and feed efficiency in commercial broilers. Indian Veterinary Journal 84(3), 317.
- Siddhuraju, P., Becker, K., 2003. Antioxidant properties of various solvent extracts of total phenolic constituents from three different agro-climatic origins of drumstick tree (*Moringa oleifera* Lam.) leaves. Journal of Agricultural and Food Chemistry 51, 2144–2155. doi: 10.1021/jf020444+.
- Snedecor, G.W., Cochran, W.C., 2004. Statistical methods, 8<sup>th</sup> ed., Publisher Wiley, 1991 ISBN 0813815614, 9780813815619.
- Sukria, H.A., Risyahadi, S.T., Foni, L.R., Aditama, R.S., Retnani, Y., Kusuma, R.I., Hasanah, Q.N., Daulai, M.S., Manik, B.T.R.S.S., Wijayanti, I., Jayanegara, A., 2025. Effects of *Moringa oleifera* as a feed supplement on performance and blood lipid profiles of broiler chicken: A Meta-Analysis. Animal Science Journal 96, 1–11. <https://doi.org/10.1111/asj.70040>.
- Ullah, F., Tahir, M., Naz, S., Khan, N.A., Khan, R.U., 2022. *In vitro* efficacy and ameliorating effect of *Moringa oleifera* on growth, carcass, stress and digestibility of nutrients in *Escherichia coli*-infected broilers. Journal of Applied Animal Research 50(1), 118–124. <https://doi.org/10.1080/09712119.2022.2039156>.
- Wahab, O.A.F.A., Sobhy, H.M., Badr, A.M.M., Ghazalah, A.A., 2020. Effect of *Moringa oleifera* seeds powder on performance and immunity of broiler chicks. AIMS Agriculture and Food 5(4), 896–910. <http://dx.doi.org/10.3934/agrfood.2020.4.896>.