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Efficacy of Pre-mixed Fungicides Against Rhizoctonia solani and Macrophomina phaseolina 
Isolated from Soybean
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1Dept. of Plant Pathology, 2Dept. of Plant Breeding & Genetics, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur, Madhya 
Pradesh (482 004), India

The experiment was conducted in 2022 (July to December) at J.N.K.V.V., Jabalpur, Madhya Pradesh, India to explore the efficacy of new 
combo agrochemicals against soil borne phytopathogenic fungi,i.e. Rhizoctonia solani and Macrophomina phaseolina. The pathogens were 
isolated from infected soybean plants and identified based on cultural and morphological characteristics. Five combo fungicides/ agro-
chemicals were tested based on their active ingredients at 50 and 100 ppm in four replications. The mycelial development of R. solani was 
significantly inhibited by penflufen 13.28%+trifloxystrobin 13.28% FS (100%) and thiophanate methyl 45%+pyraclostrobin 5% FS (100%), 
carboxin 37.5%+thiram 37.5% DS (88.33%) and carbendazim 12%+mancozeb 63% WP (80.55%) at 100 ppm. Whereas mycelial development 
of M. phaseolina was entirely inhibited by penflufen13.28%+trifloxystrobin 13.28% FS, thiophanate methyl 45%+pyraclostrobin 5% FS and 
carboxin 37.5%+thiram 37.5% DS at 100 ppm. Penflufen 13.28%+trifloxystrobin 13.28% FS completely checked both pathogen’s mycelial 
development even at 50 ppm. The significant lowest growth inhibition of R. solani (45.83%) and M. phaseolina (50.27%) was recorded by 
azoxystrobin 2.5%+thiophanate methyl 11.25%+thiamethoxam 25% FS at 50 ppm. Efficient combo fungicides in the present investigation 
could be tested against other fungal pathogens and applied as a seed treatment to reduce the fungal infection in the early stages of crops.  

1.  Introduction 

Soybean (Glycine max L.)  is a seed legume that stands out 
for its richness in quality protein (42.8%), edible oil (20.2%), 
carbohydrate (35.2%) and several health-beneficial contents 
(Uikey et al., 2022; Banerjee et al., 2023). Soybean is the 
leading food crop that contributes to the global edible oil 
(about 25%) and protein concentrate (about two-thirds) in 
the form of de-oiled cake for livestock feeding (Anonymous, 
2022; Amrate et al., 2023). Despite India being the top fifth 
soybean producer, it imports soybean oil (around 25%) to 
fulfil its domestic demand (Sagarika et al., 2023). There are 
several biotic and abiotic constraints in soybean production 
in India (Sharma et al., 2014; Rajput et al., 2021; Amrate and 
Shrivastava, 2021; Amrate et al., 2021; Bhamra and Borah, 
2022. Nataraj et al., 2023). 

Rhizoctonia solani Kuhn is a polyphagous necrotrophic soil-
borne fungus that causes root rot, root lesions, hypocotyl 
rot and aerial blight in soybean (Nelson et al., 1996; Wrather 

et al., 2010; Ajayi-Oyetunde and Bradley, 2017). Rhizoctonia 
damage may occur at any time during the growing season, but 
it is more severe on young seedlings.Fourteen anastomosis 
groups (AGs) of R. solani have been reported wherein AG 1 to 
4 causes economically significant diseases in many crop plants 
(Senapati et al., 2022; Ajayi-Oyetunde and Bradley, 2018; 
Hosseini et al., 2023). It infects a diverse range of hosts (around 
250) and causes seed rot, hypocotyl rot, crown rot, stem rot, 
sheath blight, pod rot, stem canker, black scurf, seedling blight, 
and pre and post-emergence damping off in several economic 
crop plants like corn, rice, wheat, soybean, chickpea, lentil, 
groundnut, arhar, mung bean, tomato, brinjal, chillies, and 
okra tobacco, potato, sugar beet and cotton (Ajayi-Oyetunde 
and Bradley, 2018; Senapati et al., 2022).

A n o t h e r  s o i l - i n h a b i ta nt  f u n g u s   M a c r o p h o m i n a 
phaseolina  (Tassi.) Goid. [=Rhizoctonia bataticola  (Taub.) 
Butler], the causal agent of charcoal rot, is also a devastating 
soybean pathogen (Smith and Wyllie, 1999; Amrate et al., 
2023). It is a worldwide disease that causes significant yield 
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losses in soybeans (Wrather et al., 2010). Yield reduction 
due to charcoal rot is very high, up to 100% (Amrate et al., 
2019). In addition to soybean, this pathogen has a wide host 
range (about 500), including some significant economic crops 
of India like maize, sorghum and chickpea (Mengistu et al., 
2011; Amrate et al., 2024). M. phaseolina causes complete 
mortality often during the reproductive stages of the crop and 
is characterized by the charcoal-like black appearance of the 
vascular tissues and lower stem and root of the plant (Gupta 
et al., 2012; Amrate et al., 2020). It survives in the soil as small 
black fungal structures called microsclerotia (Amrate et al., 
2024) and may also be present on the seed coat of soybean 
(Sagarika et al., 2023). 

R. solani  and  M. phaseolina  affect the crop seriously, and 
their management under field conditions is complex since 
their inoculum remains in the soil (Belkar and Gade, 2013; 
Sagarika et al., 2023; Patidar et al., 2023; Amrate et al., 2024). 
Efforts have been made to control this disease by antagonistic 
microorganisms (Khaledi and Taheri, 2016; Sagarika et al., 
2023). Fungicides always play an essential role in reducing 
inoculum present in or on the seed. Most fungicides have been 
reported efficacy in reducing both these diseases in the field 
and in vitro testing (Reznikov et al., 2016; Patidar et al., 2023; 
Sagarika et al., 2023). Application of combo agrochemicals 
in the  form of soil drenching and seed treatment might 
effectively reduce disease severity. Hence, the  present 
investigation was undertaken to reveal the In vitro efficacy 
of combo agrochemicals/fungicides recently available in the 
market against both targeted pathogens.

2.  Materials and Methods

2.1.  Collection of infected materials
Root rot-affected plants were identified based on the typical 
field symptoms such as rusty brown, dry, sunken lesions 
forming on hypocotyl near the soil area of young seedlings, 
along with some dead seedlings scattered throughout 
the field during the early stage of soybean (Nelson et al., 
1996) (Figure 1). Likewise, charcoal rot-affected plants were 
identified (Amrate et al., 2020) (Figure 1). Affected samples 
were collected from the research field of JNKVV, Jabalpur, 
Madhya Pradesh (482 004), India during kharif, 2022 (latitude 
23o12’42”N and longitude 79o56’53”E).	

2.2.  Media preparation and sterilization 
The target pathogen was isolated on Potato Dextrose Agar 
(PDA) medium. For preparation of PDA medium, 200 g peeled 
potatoes were cut into slices and boiled in 1000 ml of distilled 
water. The extract was strained through a piece of muslin 
cloth, and then 20 g dextrose and 20 g agar were added and 
heated to melt properly. Finally, the volume was made up to 
1000 ml by adding distilled water. The medium was poured 
into flasks and plugged with non-absorbent cotton plugs. The 
culture media  was then sterilized in an autoclave at 121°C 
temperature (15 lb square inch-1) for 15 minutes. 

2.3.  Isolation,identification and purification of target fungal 
agent
Root rot affected portion and tap roots of charcoal rot-affected 
plants were cut into small pieces. These were surface sterilized 
in 1% sodium hypochlorite for 1 minute, rinsed in  distilled 
water thrice, and then placed on a paper towel. After that, 
pieces were placed in the Petri plates containing autoclaved 
PDA medium amended with streptomycin sulphate. Inoculated 
Petri plates were incubated in a BOD incubator at 26±2°C for 
5–7 days. A small portion of the fastest-growing colony of 
test fungus was transferred to other Petri plates. Sclerotia/
microsclerotia were separated and transferred to other 
Petri plates containing PDA medium. After that, both the 
fungi (Rhizoctonia solani  and  Macrophomina phaseolina) 
were identified based on typical cultural and morphological 
characteristics (Dhingra and Sinclair, 1978; Nelson et al., 1996; 
Gupta et al., 2012; Oyetunde and Bradley, 2018; Amrate et 
al., 2024). The culture was maintained in refrigerator at 4–5°C 
and used for further studies.
2.4.  In vitro testing of agrochemicals
The experiment was conducted at the Department of Plant 
Pathology, J.N.K.V.V., Jabalpur, Madhya Pradesh, India in 
2022. Five combo fungicides/agrochemicals, i.e. penflufen 
13.28%+trifloxystrobin 13.28% FS (Evergol xtend), carbendazim 
12%+mancozeb 63%WP (Saaf), carboxin 37.5%+thiram 37.5% 
DS (Vitavax Power), azoxystrobin 2.5%+thiophanate methyl 
11.25%+thiamethoxam 25% FS (Electron) and thiophanate 
methyl 45%+pyraclostrobin 5% FS (Xelora) were tested based 
on their active ingredients at 50 and 100 ppm. The poisoned 
food technique was employed to test fungicides’ mycelial 
growth inhibition efficacy (Nene and Thapliyal, 1982). In 
this, the required quantity of agrochemicals was mixed 
thoroughly in 100 ml autoclaved PDA by using serial dilution 
and micropipettes. The PDA medium was also amended 
with a small quantity of streptomycin sulphate (100 ppm) to 
check for unwanted bacterial contamination. This poisoned 
medium (16–18 ml) was poured into a sterilized Petri dish. 
After solidification, the medium was inoculated with a five 
mm disc of actively growing pure culture of target pathogens. 
PDA plates without fungicide were used as a control. Each 
treatment/chemical was replicated four times in a complete 
randomized design (CRD). All these were incubated at 26±2°C 
in a BOD incubator for different periods. Mycelial growth 
(mm) of Rhizoctonia solani (at the third and fourth days of 
inoculation) and Macrophomina phaseolina  (third and fifth 
days of inoculation) were recorded from different treatments 
at 50 and 100 ppm concentrations. Fungicidal efficacy in per 
cent growth inhibition was calculated using Vincent’s formula 
(1947).

I=(C-T)/C×100

I=Per cent inhibition, C=Mycelial growth in untreated, 
T=Mycelial growth in treatment

Per cent, inhibition data was transformed and statistically 
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analysed using online OP stat software.

3.  Results and Discussion

3.1.  Identification of pathogens 
The two-day-old culture of  Rhizoctonia solani  exhibited 
whitish growth of culture, and later, the culture turned 
creamish white. Light brown irregularly shaped sclerotia were 
noticed in 7 days old growth, and later, sclerotia were mixed. 
Right angle branching of hyphae, septation and constriction 
at the origin of septation was noticed (Figure 1). Initially, 
the colony colour of M. phaseolina was dirty white but later 
started turning greyish black with age. Initially, hyphae were 
hyaline and turned honey or brown-black with septation later. 
Numerous dark brown to black microsclerotia varying in size 
(50–100 μm) were formed from aggregation and coiling of 
hyphae (Figure 1).

03

Figure 1: Identification of Rhizoctonia solani [Root rot affected 
lower stem and soybean root (A), 3 days old culture of R. 
solani (B), formation of sclerotia in 10 days old culture of 
Rhizoctonia solani (C) and branching pattern of R. solani (D)], 
and Macrophomina phaseolina [Charcoal rot affected lower 
stem and root (E), 3rd days (F) and 6 days old culture of M. 
phaseolina (G) and microsclerotia presence in old culture 
(H), respectively

Figure 2: Mycelial growth of Rhizoctonia solani and 
Macrophomina phaseolina in PDA amended with 100 
and 50 ppm of different of fungicides/insecticides (T1) 
Penflufen13.28%+Trifloxystrobin 13.28% FS, (T2) Carbendazim 
12%+Mancozeb 63%WP, (T3) Carboxin 37.5%+Thiram 
37.5% DS, (T4) Azoxystrobin 2.5%+Thiophanate methyl 
11.25%+Thiamethoxam 25% FS, and (T5) Thiophanate methyl 
45%+Pyraclostrobin 5% FS and (C) without chemical (Control)

Figure 3: Mycelial growth of M. phaseolina and R. solani 3rd 
days of inoculation in PDA amended with 50 and 100 ppm 
concentration of fungicides 

3.2.  Inhibitory effect of agrochemicals
3.2.1.  Rhizoctonia solani 
The mycelial growth of  R. solani  at three and four days 
varied among treatments. R. solani  attained 64.0 and 90.0 
mm mycelial growth on 3rd and 4th days after inoculations, 
respectively (Figures 2, 3 and 4). Per cent growth inhibition 
was calculated for both the concentrations 50 and 100 ppm. 
Results revealed significant differences in growth inhibition 
of  R. solani  among treatments (Table 1). At 100 ppm, 
complete growth inhibition (100%) was recorded by penflufen 
13.28%+trifloxystrobin 13.28% FS and thiophanate methyl 
45%+pyraclostrobin 5% FS. carboxin 37.5%+thiram 37.5% DS 
(92.25% and 88.33%) and carbendazim 12%+mancozeb 63% 
WP (83.17% and 80.55%) also recorded high growth inhibition 
at 3rd and 4th day inoculation, respectively. Azoxystrobin 
2.5%+thiophanate methyl 11.25%+thiamethoxam 25% 
FS (73.27% and 70.14%) recorded the lowest significant 
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Figure 4: Mycelial growth of M. phaseolina (5 days) and 
R. solani (4 days) in PDA amended with 50 and 100 ppm 
concentration of fungicides

growth inhibition at 3rd and 4th day, respectively. In the case 
of 50 ppm, highest percent growth inhibition (100%) was 
recorded by penflufen 13.28%+trifloxystrobin 13.28% FS 
followed by thiophanate methyl 45%+pyraclostrobin 5% 
FS (89.56% and 83.61%), carboxin 37.5%+thiram 37.5% DS 
(83.67% and 79.44%) and carbendazim 12%+mancozeb 63% 
WP (63.94% and 57.22%) at 3 and 4 days of inoculation, 
respectively. At the same time, the lowest per cent growth 
inhibition was recorded by azoxystrobin 2.5%+thiophanate 
methyl 11.25%+thiamethoxam 25% FS (53.18% and 45.83%) 
at 3 and 4 days, respectively. Dutta and Kalha (2011) found 
carbendazim 12%+mancozeb 63% as the most effective 
fungicide inhibiting the mycelial growth of R. solani, followed 
by carbendazim (98.9%) and vitavax (98.2%).hexaconazole and 
carbendazim showed 100% inhibition of R. solani isolated from 

Table 1: Percent growth inhibition of Rhizoctonia solani by new generation agrochemicals on PDA media

Sl. No. Treatments Trade name 3 days 4 days

50 ppm 100 ppm 50 ppm 100 ppm

T1 penflufen13.28%+trifloxystrobin 13.28% FS Evergol xtend 100.0
(90.00)

100.00
(90.00)

100.0
(90.00)

100.0
(90.00)

T2 carbendazim 12%+mancozeb 63% WP SAAF 63.94
(53.09)

83.17
(65.83)

57.22
(49.14)

80.55
(63.83)

T3 carboxin 37.5%+thiram 37.5% DS Vitavax power 83.67
(66.23)

92.25
(73.98)

79.44
(63.05)

88.33
(70.06)

T4 azoxystrobin2.5%+thiophanate methyl 11.25%+ 
thiamethoxam 25 %FS

Electron 53.18
(46.81)

73.27
(58.85)

45.83
(42.59)

70.14
(56.85)

T5 thiophanate methyl 45% +pyraclostrobin 5% FS Xelora 89.56
(71.21)

100.0
(90.00)

83.61
(66.13)

100.0
(90.00)

CD (p=0.05) 3.095 2.735 2.544 1.905

SEm± 1.018 0.899 0.836 0.626

CV 3.109 2.375 2.690 1.689
*Values in brackets are angular transformed

soybean at 25 ppm (Ray and Kumar, 2008). Seed dressing with 
azoxystrobin+T. viride showed the highest significant effect on 
germination per cent against root rot of soybean incited by 
R. solani (Kashyap et al., 2020). Magar et al. (2020) reported 
the mycelial growth inhibition of Fusarium oxysporum with  
tebuconazole, carboxin + thiram and carbendazim + mancozeb. 

3.2.2.  Macrophomina phaseolina
The mycelial growth of M. phaseolina at three and five days varied 
among treatments (Figure 2). M. phaseolina attained 54.0 and 
90.0 mm mycelial growth at 3rd and 5th days after inoculation, 
respectively (Figure 2, 3 and 4). Per cent growth inhibition 
varied significantly among the fungicidal treatments of 
both the concentrations, i.e. 100 and 50 ppm.  Hundred per 
cent growth inhibition was recorded in case of penflufen 
13.28%+trifloxystrobin 13.28% FS, thiophanate methyl 
45%+pyraclostrobin 5% FS and carboxin 37.5%+thiram 37.5% 
DS at 100 ppm.  Carbendazim 12%+mancozeb 63%WP also 
recorded high growth inhibition (93.69% and 91.94% at 
3rd and 5thday, respectively). At the same time, the  lowest 
per cent growth inhibition was recorded in azoxystrobin 
2.5%+thiophanate methyl 11.25%+thiamethoxam 25% 
FS (76.03% and 71.71%) at 3rd and 5th day of inoculation, 
respectively. In  case of 50 ppm, highest significant growth 
inhibition was recorded by penflufen13.28%+trifloxystrobin 
13.28% FS (100%) followed by carboxin 37.5%+thiram 
37.5% DS (92.17% and 89.72%), thiophanate methyl 
45%+pyraclostrobin 5% FS (90.90% and 86.94%), and 
carbendazim 12%+mancozeb 63% WP (81.25% and 71.94%) at 
3rd and 5th day of inoculation, respectively. At the same time,  
lowest per cent growth inhibition was recorded in azoxystrobin 
2.5%+thiophanate methyl 11.25%+thiamethoxam 25% FS 
(56.12% and 50.27%) on the 3rd and 5th day, respectively. 
Previous to our findings, many researchers also demonstrated 

Karoda et al., 2025



© 2025 PP House 05

the efficacy of these kind of molecules against M. phaseolina. 
Bankoliya et  al. (2022) recorded high growth inhibition 
of  Rhizoctonia bataticola  by carboxin+thiram (100%) and 
thiophanate methyl+pyraclostrobin (100%) at 300  and 
100  ppm, respectively. This experimental finding also 
corroborated the results of Sagarika et al. (2023) that 
penfufen 13.28%+trifoxystrobin 13.28% FS (100%), carboxin 
37.5%+thiram 37.5% DS (90.00%) and thiophanate methyl 
45%+pyraclostrobin 5% FS (86.90%) were highly efficient in 
mycelial inhibition M. phaseolina at 50 ppm. Tebuconazole 
50%+trifloxystrobin 25% WG (100%), carboxin 37.5%+thiram 
37.5% WP (84.17%) and carbendazim 12%+mancozeb 63% 
WP (88.60%) were also highly efficient in mycelial growth 
of M. phaseolin  inciting agent of charcoal rot of fenugreek 
at 100 ppm (Kumari et al., 2023). These fungicides also 
showed a similar efficacy trend against M. phseolina inciting 
agent of dry root rot of chickpea (Malagi et al., 2023). 

Carbendazim 12%+mancozeb 63% and thiophanate methyl 
and other fungicides also showed high mycelial growth 
inhibition in  case of root rot of sesame caused by  M. 
phaseolina (Bairwa et al., 2022). Tonin et al. (2013) revealed 
that carbendazim and  penflufen+trifloxystrobin were the 
most powerful in controlling  M. phaseolina. Thiophanate 
methyl 45%+pyraclostrobin 5% FS (84.17%) inhibited the most 
mycelial development of M. phaseolina and also showed in 
vivo efficacy in reducing root rot of sunflower (Thikare et al., 
2023) (Table 2) .

In our finding, all the combo fungicides containing two different 
kinds of groups have shown very high efficacy against soil-
borne fungi. One compound agrochemical, i.e., azoxystrobin 
2.5%+thiophanate methyl 11.25%+thiamethoxam 25% FS, 
only had a low inhibitory effect on both funguses. This might 
be due to the presence of one insecticidal ingredient, i.e., 
Thiamethoxam. 

Table 2: Percent growth inhibition of Macrophomina phaseolina by new generation agrochemicals on PDA media

Sl. No. Treatments Trade name 3 days 4 days

50 ppm 100 ppm 50 ppm 100 ppm

T1 penflufen13.28%+trifloxystrobin 13.28% FS Evergol xtend 100.0
(90.0)

100.0
(90.0)

100.0
(90.0)

100.0
(90.0)

T2 carbendazim 12%+mancozeb 63%WP SAAF 81.25
(64.35)

93.69
(77.42)

71.94
(58.01)

91.94
(73.61)

T3 carboxin 37.5%+thiram 37.5% DS Vitavax power 92.17
(74.0)

100.0
(90.0)

89.72
(71.40)

100.0
(90.00)

T4 azoxystrobin2.5%+thiophanate methyl 11.25%+ 
thiamethoxam 25% FS

Electron 56.12
(48.50)

76.03
(60.67)

50.27
(45.14)

71.71
(57.87)

T5 thiophanate methyl 45% +pyraclostrobin 5% FS Xelora 90.90
(72.59)

100.0
(90.00)

86.94
(68.85)

100.00
(90.00)

CD (p=0.05) 3.738 5.934 2.951 2.271

SEm± 1.229 1.951 0.970 0.747

CV 3.516 4.780 2.910 1.860
*Values in brackets are angular transformed

4.  Conclusion 

All the combo fungicides, i.e. penflufen 13.28%+trifloxystrobin 
13.28% FS and thiophanate methyl 45%+pyraclostrobin 
5% FS, carboxin 37.5%+thiram 37.5% DS and carbendazim 
12%+mancozeb 63% WP were showed high efficacy in 
inhibiting mycelial development of both the pathogens  R. 
solani and M. phaseolina at 50 and 100 ppm concentrations. 
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