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The Research was conducted at KARC during June to November, 2023 to phenotypic screening of bread wheat genotypes for yellow and 
leaf rust resistance.  Both rusts were recorded based on the modified Cobb scale. Severity of yellow rust showed from immune to 70%. 
826 genotypes showed slow rusting resistance ranging from 0–30%), 575 genotypes observed as slow rusting plant resistance ranging 
from 31–50%) and 96 genotypes observed as low adult plant resistance (>50% of yellow rust severity). Tested genotypes showed diverse 
reactions for yellow rust ranging from immune to susceptible responses. 57 genotypes were observed immune, 161 genotypes were 
showed moderately resistant reaction type. 317 genotypes were observed moderately susceptible reaction and 962 genotypes were 
observed susceptible reactions for yellow rust response. The leaf rust severity of the studied genotypes showed from immune  to 90. 
607 genotypes (showed slow rusting resistance ranging from 0–20% of severity), 563 genotypes observed as slow rusting plant resistance 
ranging from 21–50% of severity) and 326 genotypes observed as low adult plant resistance (>50% of leaf rust severity. Tested genotypes 
showed diverse reactions for leaf rust ranging from immune to susceptible responses. 58 genotypes were observed immune, 30 genotypes 
were observed moderately resistant, 80 genotypes were observed moderately resistant to moderately susceptible, 464 genotypes were 
showed moderately susceptible reaction, 864 genotypes were showed susceptible reactions for leaf rust disease response. Based on 
yellow rust, leaf rust and agronomic performance 76 genotypes were selected for the next breeding step. 

1.  Introduction

Wheat (Triticum aestivum L.), is a self-pollinating annual 
plant, the grass family, Gramineae, is extensively grown for 
staple food in the world (Mollasadeghi and Shahryari, 2011; 
Nishant et al., 2018). Wheat is not only the most important 
food security crop but also it is currently becoming strategic 
as a cash crop at the global level (Tadesse et al., 2017; 
Crespo-Herrera et al., 2018). World wheat production is 
based almost entirely on two modern species: common 
or hexaploid bread wheat (Triticum aestivum L, 2n=6x=42, 
AABBDD) and durum or tetraploid wheat (T. turgidum 
subsp. durum, 2n=4x=28, AABB) (Feldmann, 2001). World 
wheat prouduction is reached at 786,701 million metric ton 
in 2022/2023, and wheat production  is leading by China 
(136,590) stand frist, European Union (133,650) second 
and thrid India (110,554) million metric ton respectively 
(Anonymous, 2024).

Ethiopia is primary largest wheat producer country in  
Africa  (Yasin, 2015; Regasa, 2019).Wheat ranks second  in 
2021/22 cropping  season both  in terms of yield production 
(5.81 million tons) and  area coverage (1.87 mha) following  
maize among cereals for rain fed production in Ethiopia 
( Anonymous, 2022). Wheat production in Ethiopia for 
2021/22 is projected to 5.18 mt, up by 1.6 percent over 
the 2020/21 production estimated. This is due to more 
Government of Ethiopia engagement in irrigation, better 
input supply, and mechanized farming in the lowland and 
central parts of the country (Anonymous, 2021). However, 
wheat production and productivity is relatively small 
compare to global standards. The main reason is that mostly 
subsistence farming of wheat is produced by small-scale 
farmers through rain feed production system with less 
irrigated production (Adugnaw and Dagninet, 2020) and 
constrained by several infectious diseases including rusts 
(Yellow rust, stem rust and leaf rust) and Septoria leaf blotch 
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Figure 1: Level of yellow rust severity 

Figure 2: Tested genotype response for yellow rust 

diseases which are the major problem of wheat production 
in Ethiopia (Kassa et al., 2015; Endale and Getaneh, 2015; 
Tadesse et al., 2017).   

Yellow rust   is the most important fungal diseases of wheat 
and the major production challenges in the major wheat 
producing regions of Ethiopia (Ayele et al., 2008a). Wheat 
yellow rust disease caused by Puccinia striiformis f. sp. tritici 
is one of the most threat and wheat production problem in 
the highland areas of Ethiopia (Ayele et al., 2008a; Alemu 
and Muche 2019). Wheat leaf rust caused by Puccinia 
triticina Eriks., is the most widespread foliar disease

in wheat worldwide. It occurs annually in a wide range of 
environments causing significant yield losses (more than 
50%) under favorable field conditions on the susceptible 
wheat genotypes (German et al., 2007). The solution for 
the yield loss by yellow and stem rust diseases are develop 
resistance bread wheat variety or appropriate use of 
fungicide chemicals. But develop the resistance variety is the 
best mechanism to control the rusts. Resistance to wheat 
rusts is generally categorized into two types, race-specific 
and race non-specific. Race-specific resistance is generally 
qualitative and usually short-lived due to the evolution of 
potentially virulent pathogens (Wellings, 2011). In contrast, 
adequate levels of race non-specific resistance involve genes 
which might contribute from minor to intermediate effects. 
Plants carrying this type of resistance are susceptible at the 
seedling stage but express resistance at the post-seedling 
stages of plant growth. This characteristic is called slow 
rusting and often associated with some forms of adult 
plant resistance (Lagudah, 2011). Hence, the present study 
designed to phenotypic screen of bread wheat genotypes for 
yellow and leaf rust  resistance in the natural field condition.

2.  Materials and Methods

2.1.  Experimental site and year 
The experiment was conducted at Kulumsa agricultural 
research center in 2023 (June to November) main cropping 
season. Kulumsa agricultural research center is located at 
08o01’10” N longitude and 39o09’11” E latitude at an altitude 
of 2200 meters above sea level. The mean annual rain fall of 
Kulumsa is 820 mm with an average annual temperature of 
16.5°C.   

2.2.  Experimental materials and design
The materials consisted of 1500 bread wheat genotypes 
planted in two rows with two meters long, 20 Centimeters 
spacing between rows and arranged in augmented design 
without check. The materials were collected from Ethiopian 
biodiversity institute (EBI) presented in Table 1.

2.3.  Disease scoring
To evaluate these genotypes for yellow and Leaf rust diseases 
scoring were made for both yellow and leaf rust. Host 
responses to both rusts were recorded based on the modified 

Cobb scale (Peterson et al., 1948). This scale combines 
several infection types; resistant (R), moderately resistant 
(MR), moderately susceptible (MS), moderately Resistant to 
Moderately Susceptible (MRMS) and susceptible (S). Severity 
was recorded on 0–100% scale where 0% was considered as 
immunity while 100% was completely susceptible. 

3.  Results and Discussion

3.1.  Rust severity and response
The evaluation of yellow rust severity in the studied bread 
wheat genotypes revealed a diverse range of responses, 
with scores varying from complete immunity (0% severity) to 
significant susceptibility (70% severity) (Figure 1, 2 and Table 
1). This diversity highlights the presence of a wide spectrum 
of resistance levels within the tested germplasm.
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A noteworthy finding of this study was the prevalence of 
slow rusting resistance among the genotypes. A total of 
826 genotypes (55.18%) exhibited slow rusting resistance, 
characterized by yellow rust severity ranging from 0% to 30%. 
An additional 575 genotypes (38.41%) displayed a similar slow 
rusting response, with severity levels between 31% and 50%. 
These findings suggest that a substantial portion of the tested 
germplasm possesses inherent mechanisms for suppressing 
the development of yellow rust disease to a moderate degree. 
This type of resistance is particularly valuable because it offers 
durable protection against a broader range of yellow rust 
pathogens compared to race-specific resistance, which can be 
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Table 1: Disease Severity and Selected Genotypes Response for Yellow Rust and Leaf Rust

Sl. No. Genotype YrS YrR LrS LrR Sl. No. Genotype YrS YrR LrS LrR

1. 216581 20 MS 15 MS 39. 232036 20 MS 5 MS

2. 226218 40 S 0 0 40. 231644 50 S 20 MS

3. 226251 40 S 5 MRMS 41. 232034 20 MS 15 MS

4. 222454 30 S 10 MRMS 42. 232001 20 MS 5 MR

5. 226404 30 S 10 MRMS 43. 231897 30 S 5 MS

6. 222455 40 S 20 S 44. 232025 15 MRMS 1 MR

7. 222656 40 S 0 0 45. 232085 20 MS 5 MS

8. 222777 50 S 20 MS 46. 231611 30 S 10 MS

9. 222568 40 S 30 S 47. 231703 40 S 30 S

10. 226663 60 S 30 S 48. 232175 50 S 40 S

11. 226631 50 S 20 MS 49. 231763 30 S 20 MS

12. 226932 40 S 15 MRMS 50. 31962 20 MS 5 MS

13. 226883 50 S 0 0 51. 31947 20 MS 20 MS

14. 226939 40 S 15 MS 52. 31939 10 MS 5 MS

15. 226933 40 S 15 MRMS 53. 31941 30 S 10 MS

16. 226918 40 S 15 MS 54. 31975 10 MS 5 MS

17. 226944 1 MR 5 MRMS 55. 31546 10 MS 1 MR

18. 232124 30 S 50 S 56. 33214 40 S 30 S

19. 232129 50 S 30 S 57. 33972 10 MS 20 MS

20. 231758 10 MRMS 10 MRMS 58. 33924 40 S 40 S

21. 231760 10 MSMR 15 MRMS 59. 33435 10 MS 20 MS

22. 231762 20 MS 10 MRMS 60. 33444 40 S 40 S

23. 234483 30 S 30 S 61. 34248 40 S 60 S

24. 231939 20 MS 5 MR 62. 34623 20 MS 60 S

25. 232053 30 S 30 S 63. 34558 20 MS 60 S

26. 234486 50 S 0 0 64. 36396 30 S 90 S

27. 231626 50 S 20 MS 65. 36440 1 MR 30 MS

28. 231931 40 S 30 S 66. 36538 5 MS 30 MS

29. 231863 15 MRMS 20 MS 67. 36519 5 MS 40 S

30. 231949 20 MS 10 MRMS 68. 36951 1 MR 60 S

31. 234523 50 S 0 0 69. 36506 10 MRMS 50 S

32. 231950 20 MS 10 MRMS 70. 36486 1 MR 50 S

33. 231780 20 MRMS 10 MS 71. 36420 1 MR 50 S

34. 234587 20 MS 5 MS 72. 36417 0 0 60 S

35. 231913 10 MRMS 5 MR 73. 37307 1 MS 50 S

36. 232163 15 MRMS 5 MS 74. 37323 1 MR 80 S

37. 231882 30 S 20 MS 75. 37262 0 0 60 S

38. 232037 10 MRMS 5 MS 76. 226379 15 MS 20 MS

YrS: Yellow Rust Severity; YrR: Yellow Rust Response; LrS: Leaf Rust Severity; LrR: leaf Rust Response; MR: Moderately 
Resistance; MS: Moderately Susceptible; MRMS: moderately Resistant to Moderately Susceptible; S: Susceptible
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Figure 3: Level of leaf rust severity

Figure 4: Tested genotype response for Leaf rust

overcome by evolving pathogen populations (Lagudah, 2011).

The study also identified a subset of genotypes exhibiting 
immune (0% severity) and susceptible (S) responses to yellow 
rust. A total of 57 genotypes (3.81%) displayed complete 
immunity, indicating the presence of highly resistant genes 
within the germplasm pool. These immune genotypes 
represent valuable breeding resources for developing 
new wheat varieties with robust resistance to yellow rust. 
Conversely, 962 genotypes (64.26%) were classified as 
susceptible, demonstrating a significant level of vulnerability 
to yellow rust infection. This highlights the ongoing challenge 
posed by yellow rust disease and the need for continued 
efforts to develop and deploy resistant wheat varieties for 
enhanced food security in Ethiopia.

The findings of this study align with previous research 
conducted by Ayele et al. (2021), Bayisa et al. (2023), Shiferaw 
et al. (2020), Shewaye et al. (2021), and Mohammadi et al. 
(2023). These studies also reported a broad spectrum of 
yellow rust severity and reaction types among bread wheat 
genotypes. This consistency across various research efforts 
reinforces the notion that wheat germplasm exhibits a natural 
variation in response to yellow rust disease.

Building on these results, further investigations are 
recommended to delve deeper into the underlying genetic 
mechanisms of resistance observed in the slow rusting 
and immune genotypes. Molecular marker analysis can be 
employed to identify specific genes associated with resistance, 
enabling breeders to incorporate these traits into new 
breeding lines. Additionally, exploring the interaction between 
these resistant genotypes and various yellow rust pathogen 
isolates can provide valuable insights into the durability of 
the observed resistance under field conditions. By integrating 
these findings with breeding programs, researchers can 
develop effective strategies for controlling yellow rust disease 
and ensuring sustainable wheat production in Ethiopia.

The evaluation of leaf rust severity in the studied bread wheat 
genotypes revealed a wide range of responses, with scores 
spanning from complete immunity (0% severity) to significant 
susceptibility (90% severity) (Figure 3, 4 and Table 1). This 
diversity reflects the presence of a spectrum of resistance 
levels within the tested germplasm.

Similar to the findings for yellow rust, a significant portion 
of the genotypes (40.57% or 607 genotypes) exhibited slow 
rusting resistance for leaf rust, with severity levels ranging 
from 0% to 20%. An additional 37.63% (563 genotypes) 
displayed slow rusting resistance with severity between 21% 
and 50%. These results suggest that a substantial proportion 
of the tested germplasm possesses inherent mechanisms 
that can suppress the development of leaf rust disease to a 
moderate degree. As with yellow rust, slow rusting resistance 
offers a valuable advantage because it provides broader 
protection against a wider range of leaf rust pathogens 
compared to race-specific resistance (Lagudah, 2011).
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The study also identified a subset of genotypes exhibiting 
immune (0% severity) and susceptible (S) responses to leaf 
rust disease. A total of 58 genotypes (3.88%) displayed 
complete immunity, indicating the presence of highly 
resistant genes within the germplasm pool. These immune 
genotypes represent crucial breeding resources for developing 
new wheat varieties with durable resistance to leaf rust. 
In contrast, 864 genotypes (57.75%) were classified as 
susceptible, highlighting a significant level of vulnerability to 
leaf rust infection. This underscores the ongoing challenge 
posed by leaf rust disease and emphasizes the need for 
continued efforts to develop and deploy resistant wheat 
varieties for enhanced food security in Ethiopia.

The findings of this study are consistent with previous research 
conducted by El-Orabey (2018) and Draz et al. (2015). These 
studies also reported a broad spectrum of leaf rust severity 
and reaction types among bread wheat genotypes. This 
consistency across various research efforts reinforces the 
concept that wheat germplasm exhibits a natural variation 
in response to leaf rust disease.

The categorization of slow rusting and low adult plant 
resistance based on severity percentages aligns well with the 
classification system proposed by Pathan and Park (2006). 
They categorized the level of adult plant resistance (APR) 
as high, medium, and low based on severity scores. This 
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alignment facilitates the comparison of findings from this 
study with previous research and establishes a standardized 
framework for interpreting leaf rust resistance levels in bread 
wheat genotypes.

Building on these results, further investigations are 
recommended to gain a deeper understanding of the genetic 
mechanisms underlying the resistance observed in the slow 
rusting and immune genotypes. Molecular marker analysis 
can be employed to identify specific genes associated with 
resistance, enabling breeders to incorporate these traits into 
new breeding lines. Additionally, exploring the interaction 
between these resistant genotypes and various leaf rust 
pathogen isolates can provide valuable insights into the 
durability of the observed resistance under field conditions. 
By integrating these findings with breeding programs, 
researchers can develop effective strategies for controlling 
leaf rust disease and ensuring sustainable wheat production 
in Ethiopia.

4.  Conclusion

Yellow rust and leaf rust severity of the studied genotypes 
showed from immune to 70% and 90% respectively. Tested 
genotypes showed diverse reactions for yellow and leaf 
rust ranging from immune to susceptible responses. Based 
on yellow rust, leaf rust and agronomic performance 76 
genotypes were selected for the next breeding step.
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