
© 2024 PP House

Chitosan a New Perspective towards Biotic and Abiotic Stress Management in Agriculture: A 
Review

Divya Vani Sirigireddy1, Sudarshna Kumari1*, Mantramurthy Sri Datha1, Jincy M.1, Hanuwant Singh1, Gurdeep Bains2 and 
K. P. Singh2 

1Dept. of Agronomy, School of Agriculture, Lovely Professional University, Phagwara, Punjab (144 411), India 
    2Dept. of Plant Physiology, Govind Ballabh Pant University of Agriculture & Technology, Pantnagar, Uddam Singh Nagar, 

Uttarakhand (263 145), India

Plant development and crop productivity are drastically reduced worldwide due to biotic and abiotic stresses and their unexpected 
combinations. The various chemicals (pesticides, fertilizers, and phyto-regulators) and genetic engineering techniques employed to date 
to improve crop tolerance to multiple stresses have a negative influence on the environment and are time-consuming. This has accelerated 
efforts to find more eco-friendly ways to control plant stress. Chitosan is a biopolymer which is largely extracted from the deacetylation 
of chitin and appears as a viable tool to overcome these problems in search of a more environmentally acceptable solution. Due to its 
biocompatibility, eco-friendly and economic nature, become one of the most popular biopolymers used in agriculture. Chitosan also 
activates a defence mechanism by signal transduction pathway and transduces secondary molecules of hydrogen peroxide and nitric oxide 
to scavenge reactive oxygen species. Application of chitosan before subjecting to abiotic stresses such as drought, salt, and heat has been 
shown to stimulate plant growth and enhance the production of antioxidant enzymes, secondary metabolites, and abscisic acid. In drought, 
it helps to accumulate osmo-protectants to maintain the water potential of plant cells. On the other hand, plant responses towards chitosan 
are varying based on its structures, doses, developmental stages and crop type. Keeping these facts in mind this review has written with 
the objective to update the recent studies on chitosan, its various sources and its effective concentrations in different crops, mechanism 
of action against biotic and abiotic stress management to improve crop production in agriculture.

1.  Introduction

Plant growth and development are severely disrupted by 
biotic stresses such as diseases, insects, wounding and abiotic 
stresses including water logging, drought, heat and heavy 
metal toxicity, and their erratic combination causes major 
yield loss globally. (He et al., 2018, Kumari et al., 2021). As 
the global population continues to grow and food demands 
increase, it is increasingly crucial to enhance the resistance of 
crops to various stresses (He et al., 2018). To boost a plant’s 
tolerance to stresses, various methods have so far been tested. 
Particularly, the application of various insecticides, herbicides, 
fertilisers, and plant hormones, has led to an increase in 
resistance. However, the widespread application of these 
synthetic chemicals in cultivation has a negative effect on our 
planet because they accumulate in the soil, water, and aquatic 

life (Malerba et al., 2016). This has prompted researchers to 
look for more environmentally acceptable ways to alleviate 
plant stresses. A major component of the cell wall of fungi 
and the exoskeleton of arthropods, and their deacetylated 
derivative chitosan appear to be possible solutions to these 
challenges. Chitosan, a naturally existing linear polysaccharide 
comprised of D-Glucosamine and N-Acetyl-D-Glucosamine 
(Malerba and Cerana., 2020). Chitosan also activates defence 
mechanism by signal transduction & introduces signalling 
molecules (NO) nitric oxide and (H2O2) hydrogen peroxide to 
scavenge reactive oxygen species. Chitosan enhances plant 
defence mechanisms by promoting photochemical processes 
and stimulating enzymes associated with photosynthesis. 
When applied to plant foliage, chitosan triggers the hydrolysis 
of peptidoglycan in microbes, resulting in microbial death. 
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Additionally, chitosan pretreatment promotes faster plant 
growth when applied prior to abiotic stressors. This pre-
treatment also promotes the synthesis of advantageous 
secondary metabolites, enzymatic antioxidants, and ABA 
(abscisic acid) as demonstrated in the study by (Pongprayoon 
et al., 2022). During drought conditions, chitosan aids in 
the accumulation of osmo-protectants, thereby preserving 
the water potential of plant cells. Additionally, it induces 
alterations in the cellular molecular biology, physiological 
process and biochemistry in plants. However, the specific 
responses of plants to CT vary depend on factors such as 
the structure of chitosan, its concentration, plant species, 
and developmental stages (Kumari et al., 2021). Chitosan 
also induced plant defence by invigorating photochemistry 
and photosynthetic enzymes. Under biotic stress foliar 
application of chitosan leads to hydrolysis of peptidoglycan 
in microbes and leads to death. Scientists have proposed a 
variety of applications for chitosan in the field of agriculture 
due to its antimicrobial (anti-fungicidal, anti- bacteriocidal 
and anti-virucidal features against invasive pathogens and its 
ability to increase plant immunity. Numerous research on the 
mechanism by which biotic stress induces chitosan-induced 
resistance have been thoroughly discussed previously (Katiyar 
et al., 2014, Pichyangkura and Chadchawan 2015, Sharif et al., 
2018). Plants have been able to withstand abiotic conditions 
such high temperature stress, salt, water deficiency, and toxic 
effects of heavy metals by using chitosan and its oligomers 
(Malerba and Cerana 2015). Experts are interested in exploring 
this unique biopolymer further and offering a wider range 
of applications due to its ability to scavenge ROS systems 
and eventually increase efficiency during  stress. Chitosan 
application enhances the activity of photosynthesis (Li et al., 
2008), strengthens the capacity of water uptake by improved 
root growth (Zeng and Luo 2012), and mitigates the negative 
effects of antimicrobial enzymes in drought stress (Yin et al., 
2008). This review compiles the latest information on chitosan 
sources, optimal concentrations for effective application 
under various types of stresses in different crops, and the 
mechanisms through which it acts to manage both biotic 
and abiotic stresses, ultimately enhancing crop production.

2.  Sources of Chitosan

According to Pornpienpakdee et al. (2010), chitosan is a most 
important naturally occurring biopolymer that is extracted 
from deacetylation of chitin, a vital structural polysaccharide 
that makes up a significant portion of the exoskeletons of 
insects and crustaceans. The various sources of chitosan 
are the aquatic (crustaceans), terrestrial (arthropods), and 
microorganisms like fungi, blastomycota, Chytridiomycota, 
protist, planta. From crustaceans (crabs, water lobster, 
prawn, krill, mollusca, coelenterate and from arthropods 
(spiders, scorpionxs, beetles, cockroaches, brachiopods) are 
the different sources for chitosan (Table 1). 

3.  Chemical Structure and Production of Chitosan from Chitin

Table 1: Various sources of chitin and chitosan

Source Crustaceans References

Aquatic

Crab
Chionoecetes opilio,
Podopthalmus vigil,
Paralithodes, 
Carcinus 
mediterraneus 

Crespo et al. (2006)
Das et al. (2010)
Sperstad et al. (2009)
Hajji et al. (2014)

Water lobster
Cray fish Abdou et al. (2008)

Prawn
Aristens antennatus
Krill,
Daphnia longispina,
Anax imperator,
Hydrophilus piceus,
Notonecta glauca,
Agabus bipustulatus,
Asellus aquaticus

Mahlous et al. (2007)

Kaya et al. (2014)

Mollusca
Loligo sp,
Todarodes pacificus

Chaussard et al. 
(2004)
Fan et al.  (2008)

coelenterata

Terrestrial Arthropods

Spiders
Geolycosa vultuosa,
Hogna radiate,
Nephila edulis

Kaya et al. (2014)

Davies et al. (2013)

Scorpionxs
Mesobutus gibbosus Kaya et al. (2016)

Beetles
Bombyx mori,
Holotrichia parallela, 
Leptinotarsa 
decemlineata 

Zhang et al. (2000)
Liu et al. (2011)
Zhang et al.  (2000)

Cockroaches Kaya et al. (2015)

Brachiopods
Lingula seta Tanaka et al. (1988)

Fungi Mushroom Islam et al. (2017)

3.1.  Chemical structure of chitosan 

According to Dutta et al. (2004), chitosan is a co-polymer 
of N-Acetyle Glucose Amine (2- Acetamido- 2- Deoxy- - D- 
Glucose) and glucosamine (2- Amino- 2- Deoxy- - D- Glucose). 
Chitosan’s mechanical and physical properties are influenced 
by reactive functional groups, including the amino group (C2) 
and 1o & 2o hydroxyl groups (C3 & C6). Shahidi et al., 1999 
reported that these groups contribute to the material’s 
flexibility in a variety of applications (Figure 1). The biological 
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a. Chitin

b.  Chitosan

Figure 1: Structure of chitin and chitosan Figure 2: Steps for production of chitosan from chitin

applications of chitosan are reported in agriculture, food 
technology, biotechnology, medicine and pharmacy and 
environmental protection (Pongprayoon et al., 2022). In 
agriculture chitosan treated on numerous plant species, 
including cereal crops, pulses, oil seed crops, cash crops, 
aromatic, ornamental crops, horticultural crops and medicinal 
crops. In plants chitosan effects depend on the structure and 
amount, type of plant, and critical growth stages of the plant 
(Ohta et al., 2004; Pornpienpakdee et al., 2010).

3.2.  Production of chitosan from chitin
Figure 2 illustrates how to prepare chitosan from chitin. 
According to Islam et al. (2017), chitosan is made by 
hydrolyzing the acetamido reactive functional groups 
(-NHCOCH3) of chitin found in fungi and crustaceans (prawn, 
shrimp and crab). But chitosan is industrially prepared from 
chitin by processes including decolorization, deacetylation, 
demineralization, and deproteinization. According to Aranaz 
et al. (2009), the typical composition of a crustacean shell is 
20%–30% pigments called caroteinoids, 30%–40%proteins, 
and 30–50% CaCO3 (calcium carbonate). Usually, sodium 
hydroxide (NaOH) is used for the deacetylation stage, which 
produces 70% deacetylated chitosan when heated to 120oC for 
one to three hours (Dutta et al., 2004). Chitosan is produced 
when incomplete deacetylated chitin (less than 30%) is 
exposed to an alkaline solution at an amount of 30%-50% 
(w/v) at 100°C (Aranaz et al., 2009).

4.  Mechanism of Chitosan Against Plant Biotic and Abiotic 
Plant Resistance

The exact mechanism of chitosan in crops is still unknown. But 
according to Mejia-Teniente et al., 2013, Malerba and Cerana 

 

 

 

 

 

 

  

2015 reports data indicate that chitosan triggered various 
defence reactions in crops. Iriti and Faoro, 2009 reported 
that plant cell membranes have receptors that are specific 
to chitin and are known to trigger immune reactions. Plants 
that receive chitin-based treatments trigger their defence 
mechanisms because the molecules they resemble are those 
found in chitin-containing organisms. Chitosan also developed 
defence mechanisms in response to biotic stress, which 
included the creation of anti-microbial compounds like phyto-
alexins, biosynthesis of lignin, PR-proteins (pathogenesis 
related- proteins) like-glucanases and chitinases, different 
proteinase inhibitors, callose formation, and the stimulation 
of SR-genes (stress responsive-genes). Chitosan and its 
derivatives can be used as potent antibacterial chemicals and 
elicitors for plant protection since they boost defence-related 
molecules when treated with chitosan and its oligomers 
(Katiyar et al., 2014).

4.1.  Signal transduction of chitosan in plants
Meena et al., 2022 reported that the modification of the cell 
membrane’s ion permeability is a typical defence signalling 
tactic. Pongprayoon et al., 2022 also reported that chitosan 
interacts with plant cells by binding to certain receptors, 
which causes secondary messengers including H2O2, calcium 
ion (Ca2

+), NO, and phytohormones to be released inside 
the cell and cause physiological reactions. The mechanism 
and signal transduction of chitosan in plants is presented 
in Figure 3. In rice plant H2O2 acts as signal molecule under 
osmotic stress it preserving photosynthetic pigments and 
stimulating plant development. By controlling the activity of 
callose synthase, chitosan stimulates the production of Ca2+ 
in plant species, which causes soyabean cells to undergo 
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Figure 3: Role of chitosan mediated responses in stomata 
closing mechanism via ABA biosynthesis at cellular level. The 
signaling induced by chitosan involves hydrogen peroxide 
via octadecanoid pathway and nitric oxide. Hydrogen 
peroxide induces both the ABA synthesis and ROS scavenging 
mechanism while nitric oxide regulates phosphatidic acid (PA) 
via phospholipase C (PLC) and diacylglyceral kinase (DGK) (PLC/
DGK) pathway, and initiates ABA synthesis leading to closure 
of stomata and activates biotic and abiotic stress responsive 
genes (Figure courtesy of Pichyangkura and Chadchawan 
2015).

 

Ca2+-mediated programmed cell death. However, chitosan-
treated pearl millet seedlings have been discovered to have 

NO-signaling. In leaf tissues, chitosan treatment led to a 
buildup of ABA and induced resistance to the tobacco necrosis 
virus (TNV). Jasmonic acid (JA) accumulates in a number of 
plants, including tomato, French bean, and rapeseed, as a 
result of chitosan. 

Salicylic acid (SA) and jasmonic acid (JA) are two important 
plant hormones which play crucial role in signal transduction 
that promotes disease and pest resistance in plants. SAR 
(systemic acquired resistance) is regulated by JA, whereas SA 
regulates systemic induced resistance. Chitosan treatment 
could promote oxidative production, nitric oxide (NO) in the 
chloroplast, activation of MAP kinases, hydrogen peroxide 
(H2O2) through octadecanoid pathway, and hypersensitivity 
reactions. These signal molecules influence the plant’s ability 
to adjust to biotic and abiotic challenges in chitosan-treated 
plants.

5.  Application of Chitosan to Combat Biotic Stress

There is a greater chance of hunger worldwide as a result of 
biotic stress-induced agricultural product deterioration. Plants 
utilise a variety of biochemical, morphological, and molecular 
strategies to combat these stressors. Chitosan treated crops 
can trigger defence reactions in response to biotic stress, such 
as the production of antimicrobial compounds (phytoalexins), 
proteinase inhibitors, chitinases and -glucanases (PR- proteins) 
(Pichyangkura and Chadchawan, 2015). It is clearly shown 
in Table 2. The chitosan oligomers have been shown to 
enhance defence-related substances and act as antibacterial 
compounds, which in turn elicits plant defence (Katiyar et al., 

Table 2: Protective effect of chitosan against biotic stress

Crop Concentration and method of 
chitosan application

Mode of action/protective 
effects

References

Solanum lycopersicum Fruit dipping in postharvest Induced production of rishitin 
(a phytoalexin)

Reddy et al. (2000)

Capsicum annuum L. 1% chitosan, foliar application Resistance against 
Phytophthora capsica

Esyanti et al. (2019)

Melissa officinalis 0.005, 0.01, 0.015% chitosan, 
shoot spraying

Accumulation of defence-
related enzymes and phenolic 
compounds.

Vanda et al. (2019)

Vitis vinifera L. Excised leaf incubation Increased glucanase activity Trotel-Aziz et al. (2006)

Selenicereus undatus Fruit dipping in post-harvest Increased glucanase and 
chitinase activities

Ali et al. (2014)

Solanum lycopersicum 0.001, 0.01, 0.1% chitosan 
microparticles, foliar application

Accumulation of defence-
related enzymes

Colman et al. (2019)

Oryza sativa L. 0.3% chitosan oligosaccharide, 
seedlings spraying

Resistance against Fusarium 
oxysporum

Ma et al. (2019)

Solanum tuberosum  L. 0.4% chitosan, tuber immersion Resistance against Fusarium 
spp.

Mejdoub-Trabelsi et al. (2020)

Pisum sativum L. Application on the surface of pea 
pods

Induced proteinase inhibitor 
(pisatin)

Walker- Simmons et al. (1983)

Sirigireddy et al., 2024
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2014). Tomato fruit dipping in chitosan induces production 
of rishitin (a phytoalexin) resistance against postharvest 
disease of tomatoes (blackmold) caused by pathogenic fungi 
(Alternaria alternata) (Reddy et al. (2000)). Chitosan foliar 
application  improves growth and alters the regulation of 
defence genes in pepper plant (Capsicum annuum), thus 
decreasing the substantial yield losses in chilli production 
infection caused by phytophthora species (Phytophthora 
capsici) (Esyanti et al., 2019). Vanda et al., 2019 found that a 
number of phenolic compounds and defence related enzymes 
with anti-microbial properties are accumulated in perennial 
herb lemon balm (Melissa officinalis) shoot cultures treated 
with chitosan. 

Application of chitosan induces pathogenesis related 
compounds (glucanase and chitinase) in grape and dragon 
fruits. Likewise, Mejdoub-Trabelsi et al., 2020 in potato 
(Solanum tuberosum), Ma et al., 2019 in rice (Oryza 
sativa) reported that chitosan mitigates diseases induced 
by fusarium species. According to Iwasaki et al., (2020), 
suppressive properties of chitin added to the soil in 
opposition to pathogenic  microbes frequently entails a 
modification in the composition of the microbial community 
in the soil with an increase in the presence and activity of 
chitinolytic microbes  that  hydrolysis the chitinous hyphae 
of the pathogenic fungi, and with an increasing number of 
2o responders to added chitin that might affect pathogens. 
However, it has been noted that soil-borne fungal infections 
primarily employ the deacetylation of chitin oligomers by 
certain enzymes, turning them into ligand-inactive chitosan, 
as a means of circumventing the protective function of chitin 
(Gao et al., 2019).

5.1.  Effect of chitosan on fungi, bacteria, viruses, nematodes 
and insects 
Allan and Hadwiger first described chitosan as a bio-fungicide 
in 1979, since it has received a lot of attention from scientists 
studying plant protection. Its effectiveness in preventing 
bacterial-caused plant disease is also extensively recognised. 
The most workable method of reducing viral infection was to 
use chitosan as a virucide. According to research by Chirkov et 
al. (2001), potato virus X (PVX) plants are treated with chitosan 
shows resistant against PVX virus. Furthermore, Application 
of chitosan on tomato plants demonstrated enhanced 
vegetative development in addition to resistance to tomato 
mosaic virus. Oligomeric chitosan increases resistant against 
tobacco mosaic virus (TMV) by stimulation of the salicylic acid 
signalling system. 

Application of chitosan inhibits the growth and development 
of numerous fungal pathogens like Botrytis cinerea, 
Sphaerotheca fuliginea in cucumber (Ben-Shalom et al., 
2003, Moret et al., 2009), Sclerotinia sclerotiorum in carrots 
(Cheah et al., 1997), Colletotrichum capsici in chilli pepper 
(Long et al., 2018), Colletotrichum gloeosporioides in mango 
(Jitareerat et al., 2007), Penicillium italicum and Penicillium 

digitatum in orange (Zeng et al., 2010), Alternaria kikuchiana 
and Physalospora piricola in pear (Meng et al., 2010), Fusarium 
oxysporum in palm (Bautista- Banos et al., 2003), Monilinia 
fructicola in peach (Ma et al., 2013), Anthracnose in banana 
(Jinasena et al., 2011). Its antifungal action’s underlying 
mechanism is still being investigated. Nonetheless, two 
theories have been put up to account for chitosan’s antifungal 
properties. According to Leuba and Stossel’s (1986) theory, 
chitosan’s activity is correlated with its capacity to obstruct 
the function of the plasma membrane. According to Hadwiger 
and Loschke (1981), chitosan’s antifungal effect may be 
attributed to its interactions with fungal DNA and mRNA. It 
appears that there could be multiple mechanisms involved in 
chitosan impact on inhibition.

To evaluate the role of chitosan as a potential nematicide, 
more research is necessary because there isn’t a lot of 
information about nematodes. Root-knot nematodes, are 
the most harmful pests for horticulture crops globally. Bio-
agents  may offer a non-chemical approach for managing 
these nematodes. The nematophagous  fungus Pochonia 
chlamydosporia is a parasite of root-knot nematode eggs. 
It may colonise the roots of various cultivated plant species 
endophytically, however in field applications, it exhibits poor 
persistence and efficacy in managing nematodes. When 
Pochonia chlamydosporia (Verticillium chlamydosporium) is 
used in conjunction with an enhancer, it may be able to grow 
in soil and colonise roots more easily, which would increase 
its effectiveness against nematodes (Escudero et al., 2017). 
Numerous research studies have examined the efficiency of 
chitosan against various infections and pests in relation to 
various fruits and vegetables, it is enlisted in (Table 3). So, 
from the vast body of chitosan research, we selected current 
publications describing chitosan’s ability to be fungicidal, 
bactericidal, virucide and nematocidal in agriculture. The 
body of research points to the potential use of chitosan as a 
bio-stimulant to combat various hostile situations.

The most important active derivative of chitin is (N-2-CHLORO-
6-FLUOROBENZYL) chitosan, was found 100% fatal to aphids 
and leafworms in cotton crops (Rabea et al., 2005). Sahab et 
al. (2015) also report that chitosan nanoparticles (CS-g-poly 
acrylic acid) has been identified as a potential bioinsecticide 
against cotton & melon aphids (Aphis gossypii) and cowpea 
seed beetle (Callosobruchus maculatus), two insects 
connected to soybeans, as it considerably lowers the quantity 
of eggs that produced by female. Lately, Avermectin (AVM)-
grafted NOCC, a novel derivative of chitosan, was discovered 
and proven to have outstanding insecticidal properties against 
species frugiperda (army worms), brown plant hoppers, 
blackfly (black bean aphids), carmine spider mites (Li et al., 
2016). It is advantageous to use chitosan as a bioinsecticide 
on horticultural and agricultural crops.

6.  Application of Chitosan Resistance to Abiotic Stress 

According to Ben-Ari et al., 2012, Detrimental effects of abiotic 
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Table 3: Effect of chitosan against different pathogens

Crop Concentration/method of application Effect of chitosan against pathogen Reference

Cucumber 0.2 g l-1 chitosan+1.6 millimole copper, 
Foliar spray

Botrytis cinerea 
Antifungal

Ben-Shalom et al. (2003)

Carrots 2 or 4% (w/v), in vitro Sclerotinia sclerotiorum 
Antifungal activity

Cheah et al. (1997)

Cucumber 2% (w/v), Petri dish treatment  Sphaerotheca fuliginea 
Antifungal 

Moret et al. (2009)

Chilli pepper 0.32% (w/v), in vitro Colletotrichum capsici 
Hijacked fungal activity

Long et al. (2018)

Mango 1% (w/v) Post-harvest coating Colletotrichum gloeosporioides 
Fungus inhibition

Jitareerat et al. (2007)

Orange 2% (w/v) Post-harvest coating Penicillium italicum and Penicillium 
digitatum 
Fungicidal effect

Zeng et al. (2010)

Pear 25 g l-1 Post-harvest treatment Alternaria kikuchiana and Physalospora 
piricola 
Antifungal activity

Meng et al. (2010)

Palm 1 mg ml-1 soil inoculation Fusarium oxysporum 
Inhibition of root fungal activity

Bautista-Banos et al. 
(2003)

Peach 0.5 g l-1 Dipping in solution Monilinia fructicola 
Antioxidant and antifungal

Ma et al. (2013)

Banana 1.0% (w/v) chitosan, in vivo Anthracnose 
Arresting fungal activity

Jinasena et al. (2011)

Tomato 0.1 mg ml-1 Fertigation Root-knot nematode Nematocidal effect Escudero et al. (2017)

factors on biotic organisms in a specified ecosystem is simply 
known as abiotic stress. Abiotic factors such as drought, high 
salinity, heat, heavy metal stress, which shows negative impact 
on crops it results worldwide reduction in crop production 
and productivity (Zaidi et al., 2014). To combat these type of 
stresses chitin & chitosan are the compounds that have been 
examined & have the potential ability to increase tolerance 
to a variety of abiotic stress. The overview of effect chitosan 
on abiotic stress is presented in Figure 4.  

6.1.  Effect of chitosan on drought stress
Reduced agricultural production due to drought stress or 
inadequate irrigation results in various detrimental effects 
on crop health. These primarily involve the generation of 
byproducts like reactive oxygen species (ROS), They can cause 
lipid-peroxidation in membrane and interact with various 
other macromolecules, ultimately it leads to decreased 
yield, growth and development of the plant (Yang et al., 
2009; Bistgani et al., 2017). However, chitosan applications 
promoted plant growth and improved water and nutrient 
uptake, which in turn improved scavenging activities (Guan 
et al., 2009). 

Chitosan improves the plant’s tolerance to drought stress by 
modifying its metabolic processes. Proline concentration 
increased in drought stress. Proline is an essential osmo-

 

  

Figure 4: Mechanism of action of chitosan to combat abiotic 
stresses in plants

protectant that helps maintain redox balance in the 
face of abiotic stresses that alter osmotic pressure, and 
quench reactive oxygen species (Ashraf and Foolad, 2007; 
Hidangmayum, 2019). As part of an adaptation strategy, 
metabolic factor including the free proline content in leaves 
drastically increased under extreme drought stress (Din 
et al., 2011). Leaf water potential is lowered by proline 
accumulation, which helps to reduce water loss.  Additionally, 
it promotes leaf water transfer and raises leaf turgor. 
According to research by Joshi et al. (2010), Chang et al. 
(2014), Du et al., (2016), Singh and Dwivedi (2016), Amino 
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acids including - amino acid (aspartic acid, isoleucine), lysine, 
and L-threonine have also been found as osmo-regulators, 
providing nourishment when plants experience adverse 
effects (abiotic and biotic stresses).

Because of the production of free radicals in a low-water 
environment, MDA levels increase and can lead to membrane 
leakage. Lipid peroxidation produces MDA as a byproduct. 
Chitosan, on the other hand, decreases the damaging effects 
of drought stress symptoms by acting as a beneficial factor 
in osmotic adjustment. Numerous studies have shown that 
pretreating potato, thyme, bean and apple seedlings with 
chitosan reduces peroxidation of lipids, eliminates reactive 
oxygen species, and improves membrane integrity (Jiao et 
al., 2012, Bistgani et al., 2017). Because chitosan contains 
a large number of amine groups (NH2) and hydroxyl groups, 
when these combine with ROS, they create stable, non-
toxic macromolecular radicals. Chitosan has DNA-protective 
qualities and the ability to scavenge OH and O2-radicals 
(Prashanth et al., 2007). Apple seedlings are treated 
with chitosan it results increased superoxide dismutase 
(SOD) and catalase activity encourage the synthesis of 
malondialdehyde (MDA) and lessen peroxidation of lipids 
under drought stress (Yang et al., 2009). According to sun 
et al., 2004, Superoxide anion can be protected by chitosan. 
According to Liu et al. (2011), soluble sugars help root crops 
like sugar beets, pulses, and lombardy poplar (black poplars) 
withstand drought. Sugars like fructose and glucose help 
plants withstand drought by regulating their physiology & 
stress responses through mechanism of signal transduction 
pathway (Rolland et al., 2006). Sugars (carbohydrates) such as 
dextrose(glucose), seminose (mannose), fruit sugar(fructose), 
D-glucitol(sorbitol), mycose (trehalose) are increased in 
chitosan treated vegetation, whereas other genes related 
to the metabolism and transportation carbohydrates were 
also up-regulated by additional sugars found in perennial 
plant white clover (Trifolium repens) leaves (Li et al., 2017). 
Likewise, Foliar application of chitosan on wheat plants results 
increased osmolytes production such as proline, sugars like 
mannitol, glucitol, and mycose (Farouk et al., 2019). Oxidative 
stress tolerance can be achieved in seed treatment of chitosan 
in safflower under drought stress (Mahdavi et al., 2011). On 
the other hand, when chitosan is sprayed at a concentration 
of 250 mg l-1 on lobiya (Vigna unguiculata), it was shown that 
the effect on total carbohydrate and chlorophyll content 
ultimately it leads to increased plant growth and yield (Farouk 
and Amany, 2012). Chitosan effect on drought stress in 
different crops is enlisted in (Table 4).

According to Sheikha and Al-Malki (2011), Khan et al. 
(2002), treating maize, soybean, and beans with chitin 
oligosaccharides resulted in a similar rise in photosynthesis 
levels. This could be the result of higher levels of potassium 
and nitrogen in plant shoots, which raise the total number 
of chloroplasts with in cell and thus boost synthesis of 
chlorophyll (Possingham, 1980). Gornik et al. (2008) reported 

that chitosan treated grape stem cuttings can be maintained 
chlorophyll content under drought stress conditions. 
Application of chitosan on various crops rice (Boonlertnirun 
et al., 2007), wheat (Zeng and Luo, 2012), basil (Malekpoor et 
al., 2016) alleviate drought stress by different mechanisms. 
In rice by inducing hydrogen peroxide (H2O2) production, 
whereas wheat increased antioxidants and by improving 
chlorophyll content. Chlorophyll production is also stimulated 
by the increased amount of amino acid compounds produced 
by chitosan application (Chibu and Shibayama, 2001). Under 
drought conditions, an increase in proline production results 
reduction in the synthesis of photosynthetic pigments 
due to proline and photosynthetic complexes. (Paleg and 
Aspinall, 1981). Abscisic acid is produced during conditions 
of drought stress,  it act as a signaling molecule and it 
induces the stomatal closure. This might lower the level of 
carbon dioxide (CO2)  inside cells, which would lower the 
rate of photosynthesis reactions. Researchers refer to this as 
stomatal limitation. In the alternative pathway, a drought will 
lower the plant water status (relative water content) which 
may lower the activity of the Rubisco enzyme and decrease 
the CO2  fixation. It is known as non-stomatal limitation. 
Stomatal and non-stomatal limitation can be reduced by foliar 
application 0.01% chitosan on Maize plants (Veroneze-Junior 
et al., 2019). oil and protein content abundant in seeds of 
mustard, drought stress decreases the oil quality in mustard 
seeds. Mustard seedlings are soaked in 0.2% chitosan solution 
results decreases the negative effects of different fatty acids 
it leads to improved oil quality (Noormohamadia et al., 2019). 

6.2.  Effect of chitosan on salt stress 
According to Hidangmayum et al. (2019), salinity stress causes 
a negative impact on plant physiological processes and 
biochemical mechanisms. In extreme situations, this stress 
can even prevent plants from taking water and nutrients. 
This is caused by less external solute potential that result 
in a greater accumulation of sodium & chloride ions. 
Oxidative stress is caused by salt stress, which generates free 
radicles (reactive action species) and modifies biochemical 
processes that disrupt transcription, DNA replication etc 
(cellular processes). In salinity stress conditions increased 
malondialdehyde concentration was reported, as a result of 
ion toxicity-induced membrane lipid peroxidation, as other 
investigations have found. Still, several researchers have 
proposed low-concentration chitosan treatment as a means 
of mitigating the deleterious consequences of salinity stress 
(Hidangmayum et al., 2019). Low concentration chitosan-
treated seeds of sunflower & safflower can lessen the effects 
of salinity stress, since they both show decreased enzyme 
activity. (Jabeen and Ahmad, 2013). CH pretreatment during 
salt  stress results in raised activity of antioxidant enzymes 
and a decreased amount of malondialdehyde, just as in 
the cases of green gram (Ray et al., 2016), ajwain (Mahdavi 
and Rahimi, 2013), maize  (Al-Tawaha et al., 2018), desert 
indianwheat (Mahdavi, 2013) and rice (Martinez et al., 2015). 
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Table 4: Effect of Chitosan on drought stress in various crops

Plant Method of application Mode of action/Effects Reference

Apple (Malus sieversii) Foliar applied (100 mg l-1) Enhanced leaf membrane stability, 
increased antioxidant enzymes 
(superoxide dismutase and catalyse 
activity)

Yang et al. (2009)

White clover 
(Trifolium 
repens) 

1 mg ml-1, Under drought stress accumulation of 
stress protective metabolites

 Li et al. (2017)

Wheat (Triticum 
aestivum L)

0.0125% chitosan, foliar 
application

Drought stress achieved through 
enhanced the accumulation of 
osmolytes

Farouk et al. (2019)

Safflower (Carthamus  
tinctorius L.) 

Seed treatment (0.05–0.4%), Decreased enzyme activity and 
increased oxidative stress tolerance 
and seedling growth

Mahdavi et al. (2011)

Cowpea (Vigna 
ungiculata L.) 

Foliar applied (250 mg l-1). Improved growth and yield Farouk and Amany 
(2012)

Grape vine Dipping of stem cuttings before 
planting.

Drought stress achieved through 
maintaining chlorophyll content

Gornik et al. (2008)

Rice (Oryza sativa) Seed soaking and foliar 
application on seedlings, effect 
is induced H2O2 production

Drought stress achieved through 
induced H2O2 production

Boonlertnirun et al. 
(2007)

Wheat (Triticum 
aestivum L.) 

Seed treatment. Drought stress achieved through 
improved chlorophyll content,
and antioxidant enzymes 

Zeng and Luo (2012)

Basil (Ocimum 
basilicum L.) 

Foliar applied (0.4 g l-1). Enhanced plant growth Malekpoor et al. (2016)

Maize (Zea mays L.) 0.01% chitosan, foliar application Drought stress achieved by decreasing 
stomatal and non- stomatal limitation

Veroneze-Junior et al. 
(2019)

Mustard (Brassica 
napus L.)

0.2% chitosan, seedling soaking Drought stress effects on oil quality in 
mustard. Chitosan application reduced 
the harmful effect of this two fattyacids 
linolenic and erucic acids, it leads to 
increase in oil quality

Noormohamadia et al. 
(2019)

Effect of chitosan mitigates the salinity stress in numerous 
crops enlisted in (Table 5). Finally, this lessens the detrimental 
effects of salt stress. Ma et al., 2012 conducted a hydroponic 
study conducted on wheat also revealed that percentage of 
0.0625 chitosan-oligosaccharide treated seed had favourable 
outcomes by markedly raising superoxide dismutase and 
catalase enzymes concentration during induced salinity stress 
and was able to reduce oxidative stress.

Through the synthesis of enzymatic antioxidants (SOD, CAT 
and GPX), nonenzymatic antioxidants eliminates a number of 
free radicals (ROS) in plants. According to Jabeen and Ahmad 
(2013), plants that are exposed to salt stress have higher levels 
of the enzyme antioxidants SOD, POD, and CAT. An effective 
ROS detoxification is indicated by a higher concentration 
of these enzymes. Figure 5 presents an overview of effects 
of salinity stress sensitive plants and salinity stress tolerant 

plants (effect of chitosan on salinity stress plants). According 
to studies conducted by Ma et al. (2012), Jabeen and Ahmad 
(2013), plants treated with chitosan exhibit an increase in 
these enzymes and have a significant effect on reducing 
salt stress by enhancing antioxidant enzymes. Similarly, 
in salinity stress conditions, peroxidation of lipids due to 
malondialdehyde (MDA) buildup was discovered (Meloni et 
al., 2003). Jabeen and Ahmad (2013) found that treatment 
with chitosan resulted in decreased MDA level, it finally 
stabilizes membrane damage which may be the cause of 
conferring tolerance against salinity stress. Fenugreek seeds 
are treated with CH increases the leaf water content and 
photosynthetic parameters results salinity stress tolerance 
(Yahyaabadi et al., 2016). Chanratana et al. (2019) reported 
that CH used as a bio-inoculant in tomato cultivation because 
it supplies nutrients to plants, and improves growth activity of 
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Table 5: Effect of chitosan on salinity stress in various crops

Crop Mode of application Mode of action/Effect References

Sunflflower (Helianthus 
annuus)/Safflflower 
(Carthamus tinctorius) 

Seed treatment (0.25%), Increased germination 
percentage, alleviates salt stress through 
reduction of enzyme activity on both crops 

Jabeen and 
Ahmad 
(2013)

Mung bean (Vigna radiata) Seed treatment It Stimulate the morphological parameters 
and alleviate salt stress

Ray et al. 
(2016)

Ajowan (Carum copticum) Seed treated with 0.2% chitosan Increased shoot and root length and 
adjusted salt toxicity

Mahdavi and 
Rahimi (2013)

Maize (Zea mays) Foliar application Enhanced all the growth parameters and 
alleviated salt stress 

Al-Tawaha et 
al. (2018)

Rice (Oryza sativa) Seed treatment Salt stress achieved through enhanced 
catalase and peroxidase enzymes.

Martinez et 
al. (2015)

Wheat (Triticum aestivum 
L.)

0.0625% oligochitosan added to 
nutrient solution

Alleviated adverse effect of salt stress Ma et al. 
(2012)

Tomato (Solanum 
lycopersicum)

Application of chitosan–
aggregated growth-promoting 
bacteria

Under salt stress conditions, Chitosan used 
as a bioinoculant for plant growth

Chanratana 
et al. (2019)

Maize (Zea mays cv. 
Arififiye)

0.1% chitosan, foliar application Chitosan mitigating effect on salt stress is 
linked to activation of alternative respiration 
at biochemical and molecular level

Turk (2019)

Fenugreek (Trigonella 
foenum graecum L.) 

Seed treatment with 1 g l-1 Improved leaf water content, photosynthetic 
parameters and alleviated salt stress 

Yahyaabadi et 
al. (2016)

 Figure 5: Mitigative effects of chitosan in salinity stressed 
plants

plant in salinity stress conditions. Foliar application of CH at 
the rate of 0.1% in maize plants alleviates the salinity stress 
through activation of alternative respiration (Turk, 2019).

6.3.  Effect of chitosan on heavy metal toxicity
Cellular disfunction and metabolism are brought on by 
heavy metal toxicity in shoots and roots under heavy metal 
stress. Chitosan may develop complexes with a variety of 
toxic metals because it has functional amino and hydroxyl 
groups. Additionally, chitosan has several functional groups, 
such as an aminogroups (NH2) and hydroxyl group (OH), 
which play the roles of adsorbing various heavy metals and 
reducing their uptake by plants (Zubair et al., 2021). Impact 
of chitosan on heavy metal stress in various crops listed in 

(Table 6). In addition to these uses, chitosan raises the pH of 
soil, which increases the amount of negative charges present 
and encourages the development of hydroxyl-bound HM 
species (HMsOH+), which in turn promote metal precipitation. 
These procedures lessen the soil’s bioaccessibility to heavy 
metals and the plants’ ability to absorb them (Zubair et al., 
2021). Maize seedlings are treated with chitosan at the rate 
of 0.01%, it achieved cadmium stress tolerance through 
decreasing reactive oxygen species accumulation, antioxidants 
breakdown and increased amount of chlorophyll (Qu et al., 
2019)

The detrimental effects of cadmium in field mustard (Brassica 
rapa) grown hydroponically can be lessened by applying 
chitosan with different molecular weights by foliar spray, 
according to recent research (Zong et al., 2017a). Accordingto 
reports, chitosan applied externally tends to mitigate the 
effects of cadmium (Cd) toxicity and improve photosynthesis, 
transpiration (Zong et al., 2017a). Cd toxicity is known to 
reduce physiological process. However, it was shown that 
ascorbic acid decreased in response to Cd stress. This finding 
may indicate that ascorbic acid functions as the body’s first 
line of defense against oxidative stressors due to its potential 
mechanism to directly eliminate the free radicles. According to 
Zong et al. (2017a), whereas chitosan treatment greatly raised 
the amount of ascorbic acid in Cd stress plants, glutathione 
levels were found to rise under Cd stress but to stay stable 
with chitosan treatment. This demonstrates that glutathione 
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Table 6: Effect of chitosan on heavy metal stress in various crops

 Plant Stress Method of application Mode of action/Effect References

Edible rape 
(Brassica rapa L.)

Cadmium stress (cd) Applying chitosan foliarly 
(10kDa, 5kDa, or 1kDa in 
molecular weight)

Reported lower levels of Cd 
in edible rapeseed shoots.

Zong et al. (2017a, b)

Aubergine Heavy metal stress 
(Ni, Cd, Co, Cr, Pb.)

Soil amendment Chitosan has a beneficial 
effect on plant growth 
and increases the amount 
of protein, fat, fibre, and 
carbohydrates in aubergine.

Turan et al. (2018)

Maize (Zea mays 
L.)

Cadmium stress 
tolerance

 0.01% chitosan, seedling 
soaking

Increased the amount of 
chlorophyll and enhanced 
plant photosynthesis by 
reducing the breakdown of 
antioxidant enzymes and 
preventing the generation of 
reactive oxygen species.

Qu et al. (2019)

Moringa
(Moringa oleifera 
Lam.)

Cadmium stress (cd) Soil amendment It significantly increase the 
flavonoids, protein, lipids, 
alkaloids, and tannins in 
moringa plant.

Zubair et al. (2021)

is inert when exposed to chitosan. Likewise, in an identical 
experiment conducted in a greenhouse, cadmium (Cd) toxicity 
was found to have a protective effect (Zong et al., 2017b; Turan 
et al., 2018). After applying chitosan  to soil contaminated 
with heavy metals like lead(pb), cadmium(cd), chromium 
(cr), nickle (Ni), and cobalt(co), the researchers discovered a 
notable increase in the amount of carbohydrates, dietary fats, 
total soluble protein, and fibre in eggplant. In a different study, 
adding CH to soil contaminated with Cd greatly increased the 
amount of secondary metabolites such as tannins, flavonoids 
and alkaloids i.e; amines, total soluble protein, lipids in the 
moringa trees (Zubair et al., 2021).

6.4.  Effect of chitosan on heat stress
There is not much published research on using chitosan when 
under heat stress. Because it typically coexists with drought 
stress and is difficult to determine, heat stress is commonly 
viewed as a complicated issue (According to McKersie and 
Lesheim, 2013). Ibrahim and Ramadan (2015) have discovered 
that late-sown beans may be able to withstand heat stress 

when chitosan is sprayed on them along with zinc and humic 
acid. According to Choi et al. (2013), abscisic acid has been 
shown to activate genes linked to heat stress. Hussain et al. 
(2019) reported that under plastic tunnel conditions foliar 
application of chitosan at different concentrations (0.006, 
0.012, 0.003, 0.003%) mitigate heat stress in tomato seedlings 
through improving growth and quality parameters. Chitosan 
application mitigates the heat stress in tomato (Hussain et al., 
2019), Cayenne pepper plant (Al- Hassani and Majid, 2019), 
and Egg plant (Liaqat et al., 2019) are briefly listed in (Table 
7). One potential solution to improve heat stress tolerance 
is ABF3 or Abscisic acid responsive-element-binding factor 
3 (Hidangmayum et al., 2019). Hence, by promoting ABA 
activity-which is connected to the earlier study on closing 
of stomata (Bittelli et al., 2001) and further promoting 
defence-related abscisic acid-responsive genes, the chitosan 
treatment could potentially mitigate the negative effects of 
high temperatures stress.

Table 7: Foliar application of chitosan on heat stress in various crops

Plant Method of application Mode of action/Effects References

Tomato (Solanum 
lycopersicum L.)

0.003, 0.006, 0.009, 0.012% 
chitosan, foliar application

Improving the growth and quality attributes of 
tomato under plastic tunnel condition

Hussain et al. 
(2019)

Cayenne pepper plant 
(Capsicum annuum L.)

 0.00125, 0.00250, 0.00375% 
Chitosan, plant spraying

Chitosan application permits vegetative growth in 
unheated greenhouse conditions

Al- Hassani and 
Majid (2019)

Egg plant (Solanum 
melongena L.)

0.0125, 0.0150, 0.02% 
Chitosan, foliar application

Linear electron flow and non-photochemical 
quenching can be increased by chitosan application

Liaqat et al. 
(2019)

Sirigireddy et al., 2024
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7.  Conclusion

Currently in different sectors of agriculture Chitosan is using 
as antifungal, bio pesticide and biofertilizer etc. which will be 
quite useful for adopting sustainable agriculture. Chitosan 
induced defence response in plants by signal transduction 
pathway and transduces secondary molecules of H2O2 and 
NO to scavenge ROS against biotic and abiotic stresses. The 
role of chitosan in the response to abiotic stresses has not 
been extensively studied therefore, additional research will 
be needed.
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