

IIEP November 2024, 11(4): 525-530

Article IJEP5662a

Full Research

Doi: HTTPS://DOI.ORG/10.23910/2/2024.5662a

SWOT Analysis on Drone Technology in Agriculture-A Case Study Approach

E. Ravi Goud1*, G. Dhanalakshmi1, M. Sudhakar1, K. Raghavendra Chowdary2, M. Adinarayana1 and M. Sohail1

¹Krishi Vigyan Kendra, Yagantipalle, Nandyal, Andhra Pradesh (518 124), India ²Dept. of Agricultural Extension, Regional Agricultural Research Station, Nandyal, Andhra Pradesh (518 503), India

Corresponding Author

E. Ravi Goud

e-mail: eravigoud068@gmail.com

Article History

Received on 01st August, 2024 Received in revised form on 27th October, 2024 Accepted in final form on 12th November, 2024

Abstract

The study was conducted at Krishi Vigyan Kendra, Nandyal district, Andhra Pradesh, India during June, 2023 to March, 2024 to comprehend SWOT and determined the best entry tactics for sustainability of drone technology in agriculture by using TOWS matrix. Data was purposively collected from 120 beneficiary farmers who had used drone spraying more than twice in a single crop season under agriculture drone project. Then farmer response quantified by using IFE and EFE matrices to reveal its strengths and weaknesses along with opportunities and threats. The Internal and External factor (I-E) tool is used to summarize the information gained from drone's external and internal environment analyses. The results found that the average for IFE and EFE score 2.50 and 2.62, respectively, which reflected that opportunities and threats are more than strength and weakness of the drone technology in agriculture. It was more effective and easy in tall and dense crops i.e. Maize, Red gram and Paddy. Less availability of spare parts, poor repair and maintenance services was founded as weaknesses of the technology. I-E Matrix concluded that, technology was obtained in cell "V", suggested hold and maintain strategy, which indicated that drone spraying is profitable for both users and operators, but there was still scope to improve operator service centers, training facilities, and reduction of drone spraying cost, which results greater adoptability of the technology.

Keywords: SWOT analysis, I-E matrix, TOWS matrix, drone technology

1. Introduction

Agricultural sector has seen some innovative technologies that support farm management strategies in enhancing efficiency through the precision application of farm inputs in recent years. One of such innovations is the drone technology which has gained popularity (Kim et al., 2018) and has been widely used in precision agriculture (Zhang and Kovacs, 2012). A drone or an Unmanned Aerial Vehicle (UAV) according to the definition by International Civil Aviation Organization (Anonymous, 2015) is an aircraft operated without a human pilot on-board. Drones use together with other Information Communication Technologies (ICTs) is opening a new phase in the agriculture domain where we have digital agriculture, smart agriculture, and precision agriculture (Tang et al., 2021, El Bilali et al., 2019, Feng et al., 2019). They are rapidly evolving, replacing satellites and aircraft. They can capture high-quality images at cheap prices that satellites cannot do and also easy to set up and maintain (Tsouros et al., 2019). They are being used in various fields including military, agriculture, humanitarian relief etc. They can gather large

volumes of spatial data. The usage of drones in the area of agriculture is raising especially crop production, early warning, forestry, fisheries etc. They are so efficient that they can gather whole soil data without even touching the soil (Arokiaraj et al., 2020b; Reger et al., 2018). For Quick afforest using drone-seeders through pneumatic firing device that shoots seed pods deeper into the soil, in hilly terrain or mangrove forests (Debangshi, 2021). These days' drones are equipped with modern technologies like navigation, controls, imaging, sensing etc. Similarly, drones could be leveraged in several agricultural activities, including crop and growth monitoring, yield estimation, water stress assessment, and weeds, pest, and disease detection (Inoue, 2020; Panday et al., 2020). They are also being used for predictive forecasts of pests and diseases, spraying fertilizers and pesticides (Barasa et al., 2021; Na et al., 2017). Sometimes manual spraying operations are very difficult because of the crop's height and density, but drone spraying reduces the contact of humans with fertilizers, pesticides and other harmful chemicals (Pathak et al., 2020). Spraying capacity is up to five times faster than traditional machinery and completes a spraying in a 1 ha field in less

than 30 minutes and it saves 30% agrochemicals (Ravi Goud et al., 2023). However, with the advancement of technology, they are also being used in the whole production process from land preparation to harvesting (Muraru et al., 2019). As a result, farmers must devote their whole attention to crop monitoring (Srivastava, 2020). Rather than trekking around the field, farmers may now utilize technology such as drones to inspect their crops more quickly and correctly (Banumathi and Arokiaraj, 2011; Bhardwaj et al., 2021; Rejeb et al., 2022). In this regard, the majority of farmers accepted drone technology; yet, some farmers appear pessimistic toward technology due to a lack of knowledge about it. In order to visualizing pros and cons of the technology, attempted a study with the objectives of displaying SWOT and eliciting strategies with TOWS matrix. SWOT (Strengths, Weaknesses, Opportunities and Threats) analysis is one of the oldest and most widely adopted strategy tools in worldwide (R.F. Stewart 1965). Related to the methodology, that most of the research done so far had been composed of either system design, conceptual, or review-based studies (Perez-Ortiz et al., 2015; Yao et al., 2019). Notice a lack of empirical, qualitative, and case-study-based methods in agricultural drones (Rejeb et al., 2022). Therefore, the study was carried out with the agricultural drone project's beneficiary farmers with the objective of illustration of the drone technology's SWOT with I-E matrix and generated strategies with TOWS matrix.

2. Materials and Methods

The study was conducted atKrishi Vigyan Kendra, Nandyaldistrict, Andhra Pradesh, Indiaduring June, 2023 to March, 2024. KVK conducted 1500 acres of drone spraying under Agriculture Drone Project (ADP) in different field and horticultural crops at Nandyal district of Andhra Pradesh,it lies approximately between 15.47° North Latitudes and 78.48° West longitude. The present study was conducted through 120 respondents were selected purposively those who utilized drone for spraying in their farm more than twice in a season under agriculture drone project. Collected data by using a pre designed questionnaire. Translated opinions of the respondents in to a coefficient and given the rating for the same by using matrices called EFE and IFE. Conclusion drawn by using the I-E Matrix. EFE, IFE and I-E tools was explained below.

2.1. IFE matrix

The ratings in the internal matrix refer to how strong or weak each factor is in a technology. The numbers range from 4 to 1, where 4 means a major strength, 3-minor strength, 2-minor weakness and 1-major weakness. Strengths can only receive ratings 3 and 4, weaknesses-2 and 1. Internal Factor Evaluation (IFE) Matrix is a strategy tool used to evaluate technology's internal environment and to reveal its strengths as well as weaknesses.

2.2. EFE matrix

External Factor Evaluation Matrix is a strategy tool used to

examine technology's external environment and to identify the available opportunities and threats. The ratings in the external matrix refer to major opportunities and major threats in a technology. The numbers range from 4 to 1, where 4 means a major opportunity, 3- minor opportunity, 2 indicates minor weakness and 1- major weakness. Ratings, as well as weights, are assigned based on frequency of each statement.

2.3. Weighted scores and total weighted score

Each key factor was assigned a weight ranging from 0.0 (low importance) to 1.0 (high importance). The sum of all the weights must equal 1.0. The score is the result of weight multiplied by the rating. Each key factor must receive a score. Total weighted score is simply the sum of all individual weighted scores. The technology can receive the same total score from 1 to 4 in both matrixes. A total score 2.5 is an average, 1 is indicates poor, 4 indicates strong/high. In external evaluation, a low total score indicates that the drone technology isn't designed well to meet the opportunities and defend against threats. In internal evaluation a low score indicates that the drone technology is weak against its competitors.

2.4. Internal-external (IE) matrix

The internal and external factor evaluation matrixes were introduced by Fred R. David (2007) in his book 'Strategic Management' was used to evaluate technology's internal and external environment analyses. The IE matrix is a continuation of the IFE, EFE Matrix models. The IE matrix belongs to the group of strategic portfolio management tools. The IE matrix positions an organization/technology into a nine cell matrix.

The IE matrix is based on the following two criteria:

- Score from the EFE matrix -this score is plotted on the y-axis
- Score from the IFE matrix -plotted on the x-axis

The IE matrix works in a way that you plot the total weighted score from the EFE matrix on the y axis and draw a horizontal line across the plane. Then you take the score calculated in the IFE matrix, plot it on the x axis, and draw a vertical line across the plane. The point where your horizontal line meets your vertical line is the determinant of your strategy. This point shows the strategy that you should follow.

On the x axis of the IE Matrix, an IFE total weighted score of 1.0 to 1.99 represents a weak internal position. A score of 2.0 to 2.99 is considered average. A score of 3.0 to 4.0 is strong.

On the y axis, an EFE total weighted score of 1.0 to 1.99 is considered low. A score of 2.0 to 2.99 is medium. A score of 3.0 to 4.0 is high.

There are three main regions of the IE matrix which are as follow

- Grow and Build Region which covers the I, II, or IV cells
- Hold and Maintain Region which covers the III, V, or VII cells
- Harvest or Divest Regions which cover VI, VIII, or IX cells

2.5. TOWS matrix

According to Weihrich (1982) TOWS analysis is an extension of

the SWOT analysis framework that identifies your Strengths, Weaknesses, Opportunities and Threats but then goes further in looking to match up the Strengths with Opportunities and the Threats with Weaknesses. It's a great next step after completing SWOT and allows taking action from the analysis. Translated SWOT data in to SO Strategy, ST Strategy, WO Strategy, WT Strategy to minimize threats and take advantage of opportunities in external environment.

3. Results and Discussion

3.1. Internal factor evaluation

3.1.1. Strength and weakness of drone technology(IFE analysis)

From the data presented in Table 1, inferred that under strengths received highest score of '0.48' for S5'. It more effective and easy in tall and dense crops i.e. Maize, Jowar, Red gram and Paddy' and S8 'It can operate at undulated areas', followed by 0.28 score for S1 'Uniform application of chemical spraying 'and 0.20 score of S2 'Usage of agriculture drone is time effective (10 min. /ac)'.

The possible reason for S5 and S8 receiving highest score might

be that superior field efficiency of drone in agro chemical spraying in maize, jowar, red gram and paddy crops. 'It can operate at undulated areas' received highest weightage due to analyzing the area and establishing a boundary, analyses of the area, and then finally, uploading the technical GPS information into the drone's navigation system. Followed by S2 is due to application of drone-mounted sprayers in the field has enhanced the coverage ability, increased the chemical effectiveness, made the spraying job easier and faster. Spraying is done in pre-mapped routes to spray crops according to the requirements. Drones are showing great potential in covering the fields precisely in short period of time in pre-mapped routes. S1 received next best score due to advantage is release of relatively uniform droplets as opposed to the wide range of droplet sizes produced by conventional flat-fan nozzles calibrating the droplet size and flow rate to account for changes in operational parameters such as spray pressure and flying speed.

Table -1 indicates under weakness both W4 'low battery longevity', and W3 'required technical skill received' 0.10 score, as a major weakness in drone in agriculture spraying. This result is similar with results of, Laksham (2019),

Table 1. Ctrongth and	woolenges of the	drana tashnalagu
Table 1: Strength and	weakness of the	arone technology

Sl. No.	Strength		Response		
		Coefficient	Rating	Score	
S1	Uniform application of chemical spraying	0.07	4	0.28	
S2	Usage of agriculture drone is time effective (10 min./ac)	0.05	4	0.20	
S3	Useful in reducing the impact of pesticides on environment	0.02	3	0.06	
S4	Reduce the cost on chemicals	0.03	3	0.09	
S5	It more effective and easy in tall and dense crops i.e. Maize, Jowar, Redgram and Paddy	0.12	4	0.48	
S6	Best alternative to overcome labor scarcity	0.06	3	0.18	
S7	Drone utilization helps to reduce drudgery	0.04	4	0.16	
S8	It can operate at undulated areas	0.12	4	0.48	
	Weakness				
W1	High initial investment	0.04	1	0.04	
W2	Low payload (10 lit.)	0.06	1	0.06	
W3	Operation of drone require technical skill	0.05	2	0.10	
W4	Battery longevity very low	0.10	1	0.10	
W5	Need charging point for spraying larger area	0.05	1	0.05	
W6	Availability of Spare parts is very low	0.07	1	0.07	
W7	Repair and Maintenance services was poor	0.07	1	0.07	
W8	If applied during the crop's flowering and fruiting stages, it could result in yield losses	0.03	2	0.06	
W9	Poor maintenance leads to increase the drone maintenance cost	0.02	1	0.02	
	Total IFE Score	1	-	2.50	

^{4:} Major strength; 3: Minor strength; 2: Minor weakness; 1: Major weakness

Tsouros et al. (2019).'Low availability of spare parts' W6, 'Poor repair and maintenance services' W7, also found as major weakness with score of 0.07.

3.2. External factor evaluation

3.2.1. Opportunities and threats of drone technology (EFE Analysis)

Table 2 indicating that under opportunities O2 'Promotion of drone may create jobs for unemployed rural youth' received top score 0.48, Followed by O1 'Drone helps in crop health management decision' and O6 'Pest and diseases forecasting can possibly with drone data base'received highest score (0.40) as drone helps in crop with their ability to capture high-resolution images and employ spectral analysis, drones provide unparalleled insights into crop health. This information aids farmers in making precise decisions about nutrient application and pest and disease management. These results suited with the Reinecke and Prinsloo, 2017, Trivelli et al., 2019.

The possible reason for 'O2' receiving highest score was given the technical nature of the job, training farmers as 'Kisan Drone pilots' just like combined harvester operators, Kisan Drone pilots will have demand seasonally and they will be attached to the Custom Hire Centers (CHCs) under SHGs/FPOs to which drones are given. The drone operator is likely to earn fixed amount per day. This way not only more jobs are created, but the farmers will get a ready-made solution for their farmhands' problem. These results are lined with the Sylvester, 2018.

Under threats ' T_2 ' '>12 kmph wind speed affects the drone spraying' received highest score '0.15', because wind speed affects the drone spraying in various ways. Wind can alter your drone's flight path, rain can damage electronic components, and cold temperatures can drain battery life faster. These results lined with the results of Debangshi, 2021. Followed by T_1 'Possibility of spray drift to the nearby crop fields' next best score '0.12' when compared with ground-based spraying equipment, plant protection drones spray at a higher altitude from the crop canopy and fly faster, which is bound to cause more serious droplet drift and environmental safety problems.

3.3. I-E Matrix for SWOT of drone technology in agriculture

The data presented in table 1, Total weighted score of IFE Matrix received 2.50 which points the technology at average internal strengths. Whereas table 2 indicated that EFE Score received 2.62 which suggest above average to respond the external factors of the technology.

The values of IFE score and EFE score plotted in the IE matrix as mentioned in Figure 1.

The results of I-E Matrix indicated that, the strategy for drone technology in agriculture should be "hold and maintained". It shows that the crossing point of the EFE and IFE total weighted score observed at cell 'V'. This indicates that drone spraying is profitable for both users and operators. But there is still lot of scope to improve drone operator service centers, drone availability and reduction in operating costs, which results in increase in adoptability of drone technology.

Table	Table 2: Opportunities and threats of drone technology				
SI.	l. Opportunities		Response		
No.		Coefficient	Rating	Score	
01	Drone helps in crop health management decision		4	0.40	
02	Promotion of drone may create jobs for unemployed rural youth	0.12	4	0.48	
03	Agril. drone enable precise and targeted crop monitoring & treatment 0.08 3		0.24		
04	04 Drones could be highly effective in assessment of crop losses 0.07 3		3	0.21	
05	Broadcasting of Seed and fertilizer can also possible with drone	0.08	3	0.24	
06	Pest and diseases forecasting can possibly with drone data base	0.10	4	0.40	
Thre	Threats				
T ₁	Possibility of spray drift to the nearby crop fields	0.06	2	0.12	
$T_{_{2}}$	> 12 kmph wind speed affect the drone spraying	0.15	1	0.15	
T_3	Adverse weather conditions limit the effective use of drone	0.10	1	0.10	
$T_{_{4}}$	T ₄ It will be dangerous for the birds and pollinators 0.05 2		0.10		
T ₅	Cannot operate nearby electricity lines (3 phase), Railway tracks and gas stations	0.05	2	0.10	
$T_{_{6}}$	Increasing of competition for similar services	0.04	2	0.08	
	Total EFE Score	1	-	2.62	

^{4:} Major opportunities; 3: Minor opportunities; 2: Minor threats; 1: Major threats

Figure 1: I-E Matrix for drone technology in agriculture

3.4. TOWS matrix

Appropriate strategies were generated by translating the data

of SWOT in to TOWS matrix. In this connection exemplary suggestions were devised to increase the effectiveness of drones in agriculture with the aid of SWOT data (Tables 1 and 2). Strategies listed in Table 3, Reduction of cost on chemicals with location specific spraying of drone was developed as Maxi-Maxi strategy (SO) with S3,04 from SWOT. Impart technical skill to rural youth for droneoperation and Improving repair and maintenance services may maximize the drone adoption generated as Mini-Maxi (WO) strategy. Plan to spray on morning times will improve drone efficiency, and Plan to spray at a low wind speed to prevent spray drift in adjacent cropsprovided as Maxi-Mini (ST) strategy. Minimize poor maintenance of drone and avoid operation of drone in adverse weather conditions provided as WT Strategy. These are possibilities rather than solutions, however if applied properly, they might turn into such.

Table 3: TOWS matrix of drone technology in agriculture				
TOWS	Strength (S)	Weakness (W)		
Opportunities (O)	SO Strategy Maxi-Maxi strategy	WO Strategy Mini-Maxi Strategy		
	SO-1: Improving the Location specific chemical spraying may help to reduce the cost on pesticides (S3, O4)	WO-1: Impart technical skill to rural youth for drone operation (W3, O2)		
	SO-2: Broadcasting of seed and fertilizer may overcome labour scarcity at peak season (S6,O5)	WO-2: Improving repair and maintenance services may maximize the drone adoption (W7, O2)		
Threats (T)	ST Strategy Maxi-Mini Strategy ST-1: Plan to spray on morning times will improve drone efficiency (T_3 , S1) ST-2: Plan to spray at a low wind speed to prevent spray drift in adjacent crops. (T_1 , S_1)	WT Strategy Mini-Mini Strategy WT-1: Maintain extra batteries to cover larger areas (W4, T ₂) WT-2: Minimize poor maintenance of drone and avoid operation of drone in adverse weather conditions (W9, T ₂)		

4. Conclusion

The hold and maintain strategy for drone technology in agriculture was reflected in the I-E Matrix. It showed that the technology was now profitable for operators as well as users with the limited crops. The Mini-Maxi strategy of the TOWS Matrix indicated that more drone service centers were required to improve drone accessibility, and affordable costs on drone training and licensing to rural youth would help to improve the technology's wider spread.

5. Acknowledgement

The authors acknowledge the support extended by Sri. P. Balaji, Secretary SHE&CS, Krishi Vigyan Kendra, Yagantipalle and the Director, ICAR ATARI-Zone X, Hyderabad.

6. References

Anonymous, 2015. Manual on remotely piloted aircraft systems (RPAS) 2015. http://store.icao.int/products/ manual-on-remotely-piloted-aircraft-systems-rpas-

doc-10019. ICAO. 2011. Cir '328 AN/190', Unmanned Aircraft Systems (UAS)Circular.Accessed on: February 2024.

Arokiaraj, D., Ramyar, R.A., Ganeshkumar, C., Gomathi Sankar, J., 2020b. An empirical analysis of consumer behaviour towards organic food products purchase in India. Calitatea Qual Access Success, 21.

Banumathi, M., Arokiaraj, D., 2011. Eco-labeling-the need for sustainable marketing. In National Conference in the era of Global Recovery, 511–515.

Barasa, P.M., Botai, C.M., Botai, J.O., Mabhaudhi, T., 2021. A review of climate-smart agriculture research and applications in Africa. Agronomy 11(6), 1255.

Bhardwaj, H., Tomar, P., Sakalle, A., Sharma, U., 2021. Artificial intelligence and its applications in agriculture with the future of smart agriculture techniques. In Artificial Intelligence and IoT-Based Technologies for Sustainable Farming and Smart Agriculture, 25–39.

David, F.R., 2007. Strategic management: Concepts and

- cases. Business and economics, 11th ed. FT Prentice Hall, 777.
- Debangshi, U., 2021. Drones applications in agriculture. Chronicle of Bioresource Management An International E-magazine 5(3), 115–120
- El Bilali, H., Bottalico, F., Palmisano, G.O., Capone, R., 2019. Information and communication technologies for smart and sustainable agriculture. Scientific-Experts Conference of Agriculture and Food Industry. Springer, Cham321-334.
- Feng, X., Yan, F., Liu, X., 2019. Study of wireless communication technologies on Internet of Things for precision agriculture. Wireless Personal Communications 108(3), 1785-1802.
- Inoue, Y., 2020. Satellite- and drone-based remote sensing of crops and soils for smart farming-a review. Soil Science and Plant Nutrition 66(6), 798-810.
- Kim, H.G., Park, J.S., Lee, D.H., 2018. Potential of unmanned aerial sampling for monitoring insect populations in rice fields. Florida Entomologist 101(2), 330-334.
- Laksham, K.B., 2019. Unmanned aerial vehicle (drones) in public health: a SWOT analysis. Journal of Family Medicine and Primary Care 8(2), 342.
- Muraru, S.L., Cardei, P., Muraru, V., Sfîru, R., Condruz, P., 2019. Researches regarding the use of drones in agriculture. International Multidisciplinary Scientific Geo Conference: SGEM 19(6.2), 683-690.
- Na, S., Park, C., So, K., Park, J., Lee, K., 2017. Mapping the spatial distribution of barley growth based on unmanned aerial vehicle. In: 2017 6th International Conference on Agro-Geoinformatics. IEEE, 1-5.
- Panday, U.S., Pratihast, A.K., Aryal, J., Kayastha, R.B., 2020. A review on drone-based data solutions for cereal crops. Drones 4(3), 1-29. https://doi.org/10.3390/ drones4030041.
- Pathak, H., Kumar, A.K., Mohapatra, S.D., Gaikwad, B.B., 2020. Use of drones in agriculture: potentials, problems and policy needs. Publication no 300, ICAR-NIASM, Baramati, 6-7.
- Perez-Ortiz, M., Pena, J.M., Gutierrez, P.A., Torres-Sanchez, J., Herv as-Martinez, C., Lopez-Granados, F., 2015. A semi-supervised system for weed mapping in sunflower crops using unmanned aerial vehicles and a crop row detection method. Applied Soft Computing Journal 37, 533-544.
- Ravi Goud, E., Dhanalakshmi, G., Adinarayana, M., Sudhakar, M., 2023. Field study on uav technology in agro-

- chemical spraying. International Journal of Agriculture Sciences 15(7), 12476–12478.
- Reger, M., Bauerdick, J., Bernhardt, H., 2018. Drones in agriculture: current and future legal status in Germany, the EU, the USA and Japan. Landtechnik 73(3), 62–79.
- Rejeb, A., Abdollahi, A., Rejeb, K., Treiblmaier, H., 2022. Drones in agriculture: a review and bibliometric analysis. Computers and Electronics in Agriculture 198, 107017.
- Reinecke, M., Prinsloo, T., 2017. The influence of drone monitoring on crop health and harvest size. In: Proceedings of the 1st International Conference on Next Generation Computing Applications (NextComp). IEEE, 5-10.
- Stewart, R.F., O.J. Benepe, A., 1965. Mitchell Formal Planning: the Staff Planner>s Role at Start up Stanford Research Institute, Menlo Park, California, 250.
- Srivastava, K., Pandey, P.C., Sharma, J.K., 2020. An approach for route optimization in applications of precision agriculture using UAVs. Drones (Basel), 4(3), 58.
- Sylvester, G., 2018. E-agriculture in action: drones for agriculture. Food and Agriculture Organization of the United Nations and International Telecommunication Union, Bangkok.
- Tang, Y., Dananjayan, S., Hou, C., Guo, Q., Luo, S., He, Y., 2021. A survey on the 5G network and its impact on agriculture: challenges and opportunities. Computers and Electronics in Agriculture 180, 105895.
- Tsouros, D.C., Bibi, S., Sarigiannidis, P.G., 2019. A review on UAV-based applications for precision agriculture. Information (Switzerland) 10(11).
- Trivelli, L., Apicella, A., Chiarello, F., Rana, R., Fantoni, G., Tarabella, A., 2019. From precision agriculture to Industry 4.0: Unveiling technological connections in the agrifood sector. British Food Journal 121(8), 1730-
- Weihrich, H., 1982. The TOWS matrix—A tool for situational analysis. Long Range Planning 15(2), 54-66.
- Yao, H., Qin, R., Chen, X., 2019. Unmanned aerial vehicle for remote sensing applications—a review. Remote Sensing 11(12). https://doi.org/10.3390/ rs11121443.
- Zhang, C., Kovacs, J.M., 2012. The application of small unmanned aerial systems for precision agriculture: a review. Precision Agriculture 13(6), 693-712. https:// doi.org/10.1007/s11119-012-9274-5.