

Article IJEP6519a

Natural Resource Management

Doi: HTTPS://DOI.ORG/10.23910/2/2025.6519a

Study of Nitrogen Assimilation with Molybdenum and Rhizobium for Higher Yield of Green Gram (Vigna radiate L.)

Utpal Maity*, Bidhan Roy, Bigyananda Mutum, Bijoy Basanta Laya, S. S. Reddy Vennupusa, Sagnik Poddar and Bipul Barman

Dept. of Seed Science and Technology, Uttar Banga Krishi Viswavidyalaya, Pundibai, Coochbehar, West Bengal (736 165), India

Corresponding Author

Utpal Maity e-mail: utpalmaity.pph@gmail.com

Article History

Received on 10th July, 2025 Received in revised form on 29th September, 2025 Accepted in final form on 24th October, 2025 Published on 07th November, 2025

Abstract

A field experiment was conducted during the rabi season (October-March) in 2018-19 at experimental farm of Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal with four varieties of green gram (Vigna radiate L.), namely, B-1, B-27, Sona and Chaitali to assess the effect of differences in treatments of seeds on growth, physiological and economic parameters. For this purpose, the seeds were treated in combination with Rhizobium sp. and Molybdenum separately prior to sowing to find out the effect of treatment on nitrogen assimilation on yield and quality seed production compared to control (non-treated). This experiment was expected to identify the best performing cultivars (physiological and economic parameters) among other selected alternative cultivar varieties. The results showed a positive effect on the length of root and shoot, accumulation of dry matter, no. of nodule formation, carbohydrate synthesis, etc. Besides, the treatment with Rhizobium Sp. and Molybdenum had found to promote higher level of the protein content in seed. Among four selected cultivars, Sona cultivar had demonstrated the best results with inter alia maximum yield (17.24 q ha⁻¹) which was 48% higher than control. Findings indicate that the combined treated seeds could enhance the growth of different yield contributing parameters which, in turn, helped increase production and productivity of green gram over control. Besides, it would also help the farmer while selecting the best cultivars of green gram in the area of study for economic advantage and welfare of the cultivators.

Keywords: Green gram, nitrogen assimilation, rhizobium, molybdenum, growth

1. Introduction

Green gram (Vigna radiate L Wilczek), commonly known as mung bean, is an important grain legume cultivated extensively in tropical and subtropical regions, particularly India (Soren et al., 2012; Singh et al., 2015). In West Bengal, it is typically grown during the pre-kharif and kharif seasons (Ghosh et al., 2006). Traditionally, Indian farmers do not consider green gram a principal crop but rather cultivate it as a subsidiary crop on land with residual soil moisture (Joshi et al., 2002). Despite its significance the yield of green gram remains low (580 kg ha⁻¹) compared to cereals (2237 kg ha⁻¹), as per Anonymous (2024).

Pulse, particularly green gram, serve as a vital source of highquality protein (approximately 25%), making them an essential dietary component, especially for low-income population due to their high digestibility and nutritional profile (Jukanti et al., 2012; Anonymous, 2022). Green gram is consumed both as whole grains and as split "dal" in a variety of traditional

dishes. It is also a rice source of riboflavin, thiamine and ascorbic acid (vitamin C), with levels increasing significant during seed sprouting (Yu et al., 2020; Anonymous, 2023). However, India continues to rely to meet its domestic pulse demand, causing a substantial drain on foreign exchange (Tiwari and Shivhare, 2018; Anonymous, 2023). To address this issue, the government has implemented several initiatives aimed at boosting pulse production, such as the National Food Security mission (NFSM) and pulses Development program (Anonymous, 2023). The declaration of the International Year of Pulse (Anonymous, 2019) by FAO helped promote awareness of pulse' role in sustainable food system and nutrition security (Anonymous, 2016; Reddy et al., 2023). As a result, on-going efforts have been made to improve pulse productivity through improve crop varieties and integrated nutrient management (Inbasekar, 2014; Anonymous, 2022).

Research shows that applying Rhizobium and micronutrients such as molybdenum, either as seed treatment or soil

amendment, significantly improves the physiological and agronomic performance of mung bean (Ahmad et al., 2018; Chaudhary et al., 2018; Banerjee et al., 2022). The integrated use of lime seed coating, Rhizobium, and molybdenum has been shown to increase yield and enhance nodulation (Singh, P. 2017; Dhakal et al., 2019) reported the highest yield and benefit-cost ratio in black gram with boron and molybdenum application. Tejasree (2024) demonstrated that bio-priming pulse seeds with Rhizobium improved nutrient uptake and productivity under nutrient-deficient conditions. Furthermore, Prusty et al. (2020) demonstrated the effectiveness of lime and molybdenum treatment on green gram yield and nutrient uptake in Odisha. Additional studies by Hossain et al. (2004) and Awasthi et al. (2025) also support the use of Rhizobium-molybdenum combinations for enhanced nitrogen fixation and growth in legumes. Recent research highlights that molybdenum plays a critical role in enzyme systems like nitrogenase and nitrate reductase, which are essential for nitrogen metabolism (Taria et al., 2022; Banerjee et al., 2022).

In light of the above considerations, the present study was designed with the primary objective of enhancing crop yield by improving the nitrogen-fixing efficiency of Rhizobium in mung bean (Vigna radiata), both in the presence and absence of molybdenum supplementation. To achieve this, four different mung bean cultivars were selected for evaluation under a range of treatment conditions. The experimental treatments aimed to assess their effects on key growth attributes and physiological responses of the plants. By systematically analyzing the interaction between Rhizobium inoculation, molybdenum application, and cultivar performance, the study seeks to identify high-yielding genotypes and economically viable treatment combinations. The insights gained from this research are expected to contribute toward the development

of sustainable cultivation practices and improved productivity in mung bean farming systems.

2. Materials and Methods

Four commercial cultivars of mung bean were collected from the stock of Bidhan Chandra Krish Viswavidyalaya, Mohanpur, and Nadia (WB) during the *rabi* season (October –March) in 2018–19 for the study. Prior to sowing, the seeds were thoroughly mixed with *Rhizobium* culture along with Molybdenum. The effects of each treatment- *Rhizobium* and Molybdenum - when applied individually were also recoded. The field experiment was laid out using a split-plot design. Each sub-plot measured 2 sq. meters. The recommended package of practices of mung bean cultivation was followed. All selected growth parameters (including physiological and economic) were recorded during different growth stages through destructive sampling, carried out in a randomized manner at 20 day intervals. From each plot, 10 plants were sampled for each observation.

Observations on the responses of different treatments were recorded on the 45th and and 55th daysafter sowing. Growth parameters such as plant height, root and shoot length, and dry weights of root and shoot were recoded. Additionally, pod number and grain yield plant⁻¹ were estimated using standard procedures, including the by Micro-Kjeldahl method (Hedge and Hafreiter, 1962). All findings were presented in tabular form.

3. Results and Discussion

The effects of the treatments on the growth parameters of selected mung bean (green gram) cultivars were recorded on the 45th day after sowing under field condition (Table 1). The responses of the treatments in terms of shoot length,

Table 1: Effect of treatments of growth parameters on different mungbean (Green gram) cv. on 45 th day sowing in field condition																
Treatment	Sh	oot ler	ngth (c	m)	Ro	Root length (cm)				t dry w	Shoot dry matter plant ⁻¹ (g)					
	$V_{_1}$	V ₂	$V_{_3}$	V_4	V ₁	$V_{_2}$	V ₃	V_4	$V_{_1}$	$V_{_2}$	V_3	$V_{_4}$	$V_{_1}$	V ₂	V_3	$V_{_4}$
Control	20.8	20.6	20.2	20.7	6.7	6.9	6.9	6.5	0.038	0.033	0.030	0.030	0.34	0.37	0.34	0.32
Molybdenum (MO)	21.8	21.6	21.8	21.4	7.5	7.5	7.0	7.9	0.034	0.040	0.040	0.430	0.44	0.44	0.45	0.44
Rhizobium (R)	22.4	22.5	22.3	22.7	8.3	8.2	8.2	8.2	0.043	0.043	0.041	0.040	0.55	0.53	0.50	0.48
Molybdenum (MO)+ Rhizo- bium (R)	31.0	33.4	33.8	32.4	8.4	8.88	8.9	8.5	0.046	0.046	0.043	0.043	0.62	0.59	0.66	0.63
	LSD-A =NS B=1.119 (1%) S AB=NS SEm±-A=0.3256 B=0.2831 AB=0.5662				LSD-A =NS B=NS AB=NS SEm±- A =2.9262 B=2.8884 AB=5.7767			LSD-A=0.004 (1%)S B=0.004 (1%)S AB=NS SEm±-A=0.0008 B=0.0011 AB=0.0021				LSD-A=NS B=0.026 (1%)S AB=0.039 (5%)S SEm±-A=0.0094 B=0.0068 AB=0.0135				

LSD-A: Variety; B: Treatment; AB: Interaction; SEm-A: Variety; B: Treatment; AB: Interaction; V₁: Sona; V₂: (B1), V₃ (B27); V₄: Chaitali

root length, root dry weight and shoot dry matter plant⁻¹ are presented in the table and compared with the control (no treatment). It was observed that shoot length, root length and dry matter plant⁻¹ increased compared to the control. This improvement shows a positive correlation with micronutrients availability (Mecarty et al., 2022). The root dry weight also showed a significantly increased, with the combined treatment of Molybdenum and Rhizobium demonstrating a more pronounced effect than either treatment alone. Among all the cultivars, Sona and B-1 exhibited the highest and most prominent responses. The enhanced effect of the treatment could be attributed to increased photosynthetic activity, likely due to greater nitrogen availability in the soil facilitated by the presence of Molybdenum and Rhizobium (Olikar et al., 1978; Khan et al., 1980; Bambara et al., 2010).

Quantitative measurements of the number of branches/plant, number of leaves/plant and average number of nodules/plant on the 45th day revealed a positive and also higher response to the treatments compared to the control, indicating a beneficial effect. Furthermore, the combined application of molybdenum and Rhizobium elicited the maximum response across all four cultivars, with Sona and B-1 again showing the highest response. The results, presented in Table 2, also indicate that the differences in response among the treatments were statistically significant.

Observations were also recorded at the maturity stage of the plant to study pod length, average pod weight and grain weight/ pod, which are important contributors to overall yield. These parameters showed a positive correlation with yield components (Aloweidat et al., 2014). It was found that

Table 2: Effect of treatments on growth parameters of different mungbean (Green gram) cv. on 45th day sowing in field condition

Treatment	Branches plant ⁻¹				Leaves plant ⁻¹				Average nodule no. Plant ⁻¹			
	V ₁	V ₂	$V_{_3}$	V_4	V ₁	V_{2}	$V_{_3}$	V ₄	V ₁	V ₂	$V_{_3}$	$V_{_4}$
Control	0.30	0.33	0.33	0.00	4.13	4.46	4.66	4.06	6.00	8.60	6.4	3.90
Molybdenum (MO)	0.33	0.36	0.40	0.00	4.53	4.73	4.86	4.06	6.10	8.60	7.7	7.10
Rhizobium (R)	1.73	1.74	1.80	0.00	4.66	5.20	5.22	4.33	9.40	9.70	9.20	9.10
Molybdenum (MO)+Rhizobium (R)	1.75	1.80	1.83	0.00	4.66	5.86	5.20	4.40	10.20	10.60	10.0	8.90
	B=0.0 AB=0.	x=0.036 22 (1% .044 (1 -A =0.	s) s %) s	S	LSD-A=NS B=NS AB=NS SEm± -A =2.9262				B=0.00 AB=NS	=0.004(1)4(1%)S -A =0.00	,	
	B=0.006 AB=0.011				B=2.8884 AB=5.7767				B=0.0011 AB=0.0021			

LSD-A: Variety; B: Treatment; AB: Interaction; SEm±-A: Variety; B: Treatment; AB: Interaction

Molybdenum- treated seeds produced longer pods, whereas the responses from other treatments were more or less similar to the control. The effects were more prominent in the sona and B-1 cultivars. The average pod weight and the grain weight of 100 pods were higher in crops treated with Rhizobium compared to the control, and these values were also greater than those recorded for the combined treatment with Molybdenum and Rhizobium. However, significant improvements in yield parameters were observed in the B-1 and Chaitali cultivars due to the applied treatments. These results are presented in Table 3.

Table 4 shows the number of flowers retained in different mung bean (Green gram) cultivars on the 55th day after sowing. The results indicated that cultivar B-27 performed best under both treated and control conditions, followed by B-1. The combined treatment of Molybdenum with *Rhizobium* produced better performance compared to either treatment applied individually, for both flowering and pod development parameters. The differences in responses among treatments and interactions were statistically significant. However, in the case of the Chaitali cultivar, no flowers or pods were observed

under either treated or control conditions.

The effects of treatments on the growth parameters of different mung bean (Green gram) cultivars, recorded on the 45th day after sowing, are presented in Table 5. The growth parameters considered for analysis included the number of pods plant⁻¹, seed pod⁻¹ and yield ha⁻¹ (q ha⁻¹). The combined treatment of Molybdenum+Rhizobium resulted in the highest number of pods plant-1 in the Sona cultivar, followed by B-1, B-27 and Chaitali respectively. In terms of seeds/pod, B-1 exhibited the best performance across all treatments, including the control, followed by the Sona variety. In both parameters, significant variations in responses and interaction between treatments and cultivars was observed, indicating a close interrelationship between yield and its component traits (Damodaram et al., 1989). The most important aspect of the study-yield/ha-showed that the maximum yield (17.24 q ha⁻¹) was obtained from the Sona variety under the combined treatment of Molybdenum and Rhizobium, which represented a 48% increase over the control. The same variety also produced high yields when treated individually with Molybdenum (14.28 q ha⁻¹) and *Rhizobium* (15.06 q ha⁻¹),

Table 3: Effect of seed treatment with	rhizohium and molyhdenum on vield	parameters of mungbean (Green gram)
Table 3. Effect of Seed freatifierit with	THIZODIUHI AHU HIDIVDUEHUHI OH VIEIU	Dalaineters of mulighean (dieen glain)

Treatment	Р	Pod length (cm)				rage po	d weigh	ıt (g)	100 grain weight (g)			
	V ₁	$V_{_2}$	$V_{_3}$	V_4	V ₁	V ₂	$V_{_3}$	V_4	V ₁	V ₂	V_3	V_4
Control	6.65	6.91	6.72	6.66	0.39	0.39	0.38	0.39	2.20	2.20	2.19	2.19
Molybdenum (MO)	6.79	7.03	6.80	6.74	0.41	0.40	0.41	0.40	2.21	2.21	2.24	2.21
Rhizobium(R)	6.37	6.62	6.65	6.82	0.45	0.49	0.47	0.46	2.45	2.38	2.37	2.32
Molybdenum (MO)+Rhizobium (R)	6.65	6.95	6.66	6.87	0.35	0.52	0.35	0.52	2.49	2.48	2.47	2.49
	LSD-A=0.030 (1%) S B=0.042 (1%) S AB=0.085 (1%) S SEm± -A=0.0.006 B=0.011 AB=0.085				LSD-A= B=0.01 AB=0.0 SEm± - B=0.00 AB=0.0	32 (1% A=0.00 4	s ´) S		AB=NS	56 (1%) : 5 -A=0.01 14		

LSD-A: Variety; B: Treatment; AB: Interaction; SEm±-A: Variety; B: Treatment; AB: Interaction

Table 4: Number of flowers and pod number plant⁻¹ retained in different mungbean (Green gram) CV. on 55th day after sowing in field conditions

Treatment		Flower no.	plant ⁻¹	Pod no. plant ⁻¹					
	$V_{_1}$	V_2	V_3	V_4	V_{1}	V_2	V_3	$V_{_4}$	
Control	3.73	3.26	3.80	0.00	6.26	6.00	6.86	0.00	
Molybdenum (MO)	3.86	3.60	3.90	0.00	6.70	6.55	6.85	0.00	
Rhizobium (R)	3.80	3.43	3.85	0.00	6.53	6.13	6.65	0.00	
Molybdenum (MO)+Rhizobium (R)	3.90	3.75	3.98	0.00	6.80	6.70	6.95	0.00	
	LSD-A=0.169 B=0.100 (1% AB=0.0850.1 SEm± -A =0.0 B=0.026 AB=0.051) S .48 (1%) S		LSD-A =0.182 (1%) S B=0.147 (1%) S AB=0.0294 (1%) S SEm± -A=0.035 B=0.037 AB=0.074					

LSD-A: Variety; B: Treatment; AB: Interaction; SEm±-A: Variety; B: Treatment; AB: Interaction

Table 5: Effect of treatments on growth parameters of different mungbean (Green gram) cv. on 45th day sowing in field condition

Treatment	Pods plant ⁻¹				Seed pod ⁻¹ (g)				Yield ha ⁻¹ (q)				% yield increase over control			
	$V_{_1}$	V_{2}	V_3	$V_{_4}$	$V_{_1}$	$V_{_2}$	$V_{_3}$	$V_{_4}$	$V_{_1}$	V ₂	V_3	V_4	$V_{_1}$	V_2	V_3	V_4
Control	17.93	15.80	16.06	10.13	0.28	0.29	0.26	0.25	12.04	10.99	10.02	6.07				
Molybde- num (MO)	20.53	17.00	18.26	11.60	0.29	0.32	0.28	0.27	14.28	13.05	12.27	7.51	18.60	18.74	22.45	23.72
Rhizobium (R)	20.93	18.26	18.50	12.45	0.30	0.32	0.29	0.28	15.06	14.02	12.87	8.36	25.08	27.57	28.44	37.72
Molybde- num (MO) + Rhizo- bium (R)	22.45	19.06	18.60	13.15	0.32	0.34	0.31	0.29	17.24	15.55	13.83	9.15	43.18	41.49	38.02	50.74
	LSD-A =1.720 (1%) S B=0.855 (1%) S AB=NS SEm± -A=0.3281 B=0.2163 AB=0.4325				LSD-A =0.018 (1%) S B=0.015 (1%) S AB=NS SEm± -A=0.0035 B=0.0040 AB=0.0081				LSD-A=0.0679 (1%)S B=0.533 (1%)S AB=0.786 (5%) S SEm± -A=0.1297 B=0.1348 AB=0.2695				Variab by	le can n	ot be a	nalysis

representing yield increases of 41.49% and 38.02% over the control, respectively. The second-highest yield was recorded in the B-1 cultivar, followed by B-27 and Chaitali. These, finding suggest that the combined application of Molybdenum and Rhizobium, as well as their individual use, significantly enhanced yield compared to the over control across all the selected mung bean cultivars.

An analysis of carbohydrate content in seed was also conducted for the different treatments and cultivars. The findings, presented in Table 6, indicate that carbohydrate content increased significantly under the combined treatment of Molybdenum with *Rhizobium* sp., followed by the individusl treatments of Rhizobium sp. and Molybdenum, respectively. The highest response was observed in the Sona cultivar, followed by B-1, B-27 and Chaitali. These results suggest that the increased in carbohydrate content may be attributed to enhanced nitrogen-fixing efficiency by Rhizobium sp., which was further supported by molybdenum application. This improvement is positive correlated with increase photosynthetic efficiency in the crop (Olikar et al., 1978).

Table 6: Effect of treatments on total varbohydrate content of mature seed of mungbean (Data expressed as per cent per 100 mg of dry material)

Treatment	Flower no. plant ⁻¹									
	V_{1}	V ₂	V_3	$V_{_4}$						
Control	59.62	57.34	56.87	52.80						
Molybdenum (MO)	63.14	59.06	58.78	53.46						
Rhizobium (R)	63.75	60.43	59.16	54.52						
Molybdenum (MO)+Rhizobium (R)	64.32	62.25	61.34	56.78						
	LSD-A=0.24 (1%)S B=0.017 (1%)S AB=0.034 (5%)S SEm± -A =0.005 B =0.004 AB=0.009									

LSD-A: Variety; B:Treatment; AB: Interaction; SEm± -A: Variety; B: Treatment; AB: Interaction

4. Conclusion

The study demonstrated that Molybdenum enhanced nitrogen- fixing efficiency of Rhizobium sp.in mung bean by promoting nitrate reductage activity. It also contributed to increased photosynthetic activity, resulting in higher carbohydrate content in seeds. Rhizobium inoculation improved growth parameters compared to control. However, when the Rhizobium treatment was supplemented with molybdenum, productivity increased significantly. The experiment identified the Sona cultivar as the highest-yielding variety, producing a maximum yield of 17.24 q ha-1 an increase of 48% over control.

5. References

- Ahmad, J., Ahmad, F., Iqbal, S., Ali, B., Shah, S.M.A., Ali, M., Nawaz, H., Abbas, M.W., Mahmood, Z., 2018. Response of mungbean yield and yield components into various levels of phosphorous. Journal of Materials Science 5(1), 1-4. https://doi. org/10.3329/ralf.v5i2.38050.
- Aloweidat, M.Y., 2014. Growth performance and yield components of five legume crops under rain-fed conditions. http://dspace.hebron.edu:80/xmlui/ handle/123456789/522 Hebron University College of Graduate Studies & Academic Research.
- Anonymous, CEIC Data (2024). India Pulse and Cereal Yield Statistics. Available at: https://www.ceicdata.com. Accessed on: 8 July 2025
- Anonymous, 2023. FAO 2023. Pulse Crops and Food Security in Asia. Available at: https://www.fao.org. Accessed on: 8 July 2025
- Anonymous, ICAR-KVK (2023). Nutritional aspects of sprouted mung bean. Available at: www.kvk.icar.gov.in. Accessed on: 8 July 2025
- Anonymous, 2022. IIPR (2022). Annual Report 2021–22. Indian Institute of Pulses Research, Kanpur. Available at: https:// www.icar-iipr.org.in/annual/Annual Report 2021-22.pdf. Accessed on: 8 July 2025
- Anonymous, 2019. International Year of Pulse, Environmental Earth Sciences (2019), https://doi.org 10.1007/s12665-019-8106-6.
- Anonymous, 2023. Ministry of Agriculture and Farmers Welfare, 2023. Schemes for pulse production. Government of India. Available at: https://dpd.gov.in/Publications.htm. Accessed on: 8 July 2025.
- Anonymous, 2022. NITI Aayog (2022). Pulses and Nutritional Security: Report on Self-Sufficiency. Government of India. Available at: https://www.niti.gov.in/sites/ default/files/2023-02/Working-Group-Report-Demand-Supply-30-07-21.pdf. Accessed on: 8 July 2025.
- Anonymous, 2016. International Year of Pulses 2016: Nutritious seeds for a sustainable future. Food and Agriculture Organization of the United Nations. Retrieved from http://www.fao.org/pulses-2016. Accessed on: 8 July, 2025.
- Awasthi, L.K., Pandey, L., Chalise, D., 2025. Effect of rhizobium and molybdenum on growth, root nodulation and yield of mung bean (Vigna radiata L.) in Tikapur, Kailali. Journal of Tikapur Multiple Campus 8, 141-163. https://doi. org/10.3126/jotmc.v8i8.75977
- Bambara, S.K., Ndakidemi, P.A., 2010. Effects of Rhizobium innoculation, lime and molybdenum on nitrogen fixation of nodulated Phaseolus vulgaris L. African Journal of Microbiology Research 4(9), 682-696. http://www. academicjournals.org/ajmr
- Banerjee, P., Nath, R., 2022. Prospects of molybdenum fertilization in grain legumes-A review. Journal of Plant Nutrition 45(9), 1425–1440. https://doi.org/10.1080/0

- 1904167.2021.2020831.
- Banerjee, P., Das, P., Sinha, S., 2021. Importance of molybdenum for the production of pulse crops in India. Journal of Plant Nutrition 45(2), 300-310. https://doi.org/10.1080/019 04167.2021.1952226.
- Chaudhary, M., Singh, S., Babu, S., Prasad, M., 2018. Effect of integrated nutrient management on productivity, nutrient acquisition and economics of blackgram (Phaseolus mungo L.) in an inceptisol of eastern Uttar Pradesh. Legume Research-An International Journal 41(5), 759–762. www.arccjournals.com/www. legumeresearch.in
- Damodaram, P.C., Reddy, P.N., Reddy, K.R., 1989. Interrelationship between yield and yield component characters in black gram [Vigna mungo (L.) Hepper]. Journal of Research-Andhra Pradesh Agricultural University. 17(1), 62-64.
- Dhakal, R., Sitaula, H., Acharya, B., Bhusal, S., Dhakal, S., 2019. Effect of rhizobium inoculation, phosphorus and molybdenum in yield, yield attributes and nodulation of cowpea under mulched and un-mulched field condition. American Journal of Agriculture and Forestry 7(3), 111–118. https://doi.org/10.11648/j. ajaf.20190703.14.
- Ghosh, P., Patra, A.P., Nayek, R.D.A.S., 2006. Growth and productivity performance of different rainy season legumes in the Gangetic plains of West Bengal. Journal of Crop and Weed 2(1), 58-62.
- Hedge, J.E., Hafreiter, B.T., 1962. In carbohydrate chemistry 17 (Edsawistler, R.L. Beomiller, J.N. (Eds.), Academic press New York. https://doi.org/ 10.4236/acs.2019.91002.
- Hossain, D., Arm, S., 2004. Performances of mungbean varieties as affected by Rhizobium inoculants. Bulletin of the Institute of Tropical Agriculture, Kyushu University 27, 35–43.
- Inbasekar, K., 2014. Pulses production in India: Challenges and strategies. Scientist, Division of Agricultural Economics, IARI, New Delhi, India, 59(3), 403-414. https://doi.org/ 10.5958/0976-4666.2014.00008.4.
- Joshi, P.K., Saxena, R., 2002. A profile of pulses production in India: Facts, trends and opportunities. Indian Journal of Agricultural Economics 57(3), 326–339. http:// ageconsearch.umn.edu aesearch@umn.edu
- Juganti, A.K., Gaur, P.M., Gowda, C.L.L., Chibbar, R.N., 2012. Nutritional quality and health benefits of pulses. British Journal of Nutrition 108(S1), S1–S2. https://doi. org/10.1017/S0007114512000797.
- Khan, M.R.I., Gatehouse, J.A., Boulter, D., 1980. The seed proteins of cowpea (Vigna unguiculata L. Walp.). Journal of Experimental Botany 31(6), 1599–1611. https://doi. org/10.1093/jxb/31.6.1599.

- Mecarty, J.S., Dawson, J., Lalrammawii, C., 2022. Effect of micronutreints on growth and yield of green gram (Vigna radiata L.). The Pharma Innovation Journal 11(7), 2967–2969. https://www.thepharmajournal.com.
- Oliker, M., Poljakoff-Mayber, A., Mayer, A.M., 1978. Changes in weight, nitrogen accumulation, respiration and photosynthesis during growth and development of seeds and pods of Phaseolus vulgaris. American Journal of Botany 65(3), 366-371. https://doi. org/10.1002/j.1537-2197.1978.tb06080.x
- Prusty, M., Alim, M.A., Swain, D., Ray, M., 2020. Effect of lime coating and molybdenum on the yield and nutrient uptake of green gram (Vigna radiata L.) under mid central table land zone of Odisha. www.thepharmajournal.com, 9(11), 349–352. https://doi.org/10.22271/tpi.2020. v9.i11f.5378.
- Reddy, A.A., Bhagwat, K.D., Tiwari, V.L., Kumar, N., Dixit, G.P., 2023. Policies and incentives for promotion of pulses production and consumption: A Review. Journal of Food Legumes 36(4), 209-228. https://doi.org/10.59797/jfl. v36.i4.157.
- Singh, A.K., Singh, S.S., Prakash, V.E.D., Kumar, S., Dwivedi, S.K., 2015. Pulses production in india: Present status, sent status, bottleneck and way forward. Journal of Agricultural Research 2(2), 75-83.
- Singh, S.P., 2017. Effect of micronutrients on nodulation, growth, yield and nutrient uptake in black gram (Vigna mungo L.). Annals of Plant and Soil Research 19(1), 66–70.
- Soren, K.R., Patil, P.G., Das, A., Bohra, A., Datta, S., Chaturvedi, S. K., Nadarajan, N., 2012. Advances in pulses genomic research. Indian Institute of Pulses Research, Kanpur, pp-25.
- Taria, S., Arora, A., Alam, B., Kumar, S., Yadav, A., Kumar, S., Arunachalam, A., 2022. Introduction to plant nitrogen metabolism: an overview. Advances in Plant Nitrogen Metabolism, 1-18.
- Tejasree, M.K., 2024. studies on seed biopriming with bacterial consortia in greengram (Vigna radiata (I.) wilczek) (doctoral dissertation, Mahatma Phule Krishi Vidyapeeth).
- Tiwari, A., Shivhare, A.K., 2018. Pulse scenario in India: Issues and strategies. New Delhi: Agrotech Publishing Academy.
- Yu, W., Zhang, G., Wang, W., Jiang, C., Cao, L., 2020. Identification and comparison of proteomic and peptide profiles of mung bean seeds and sprouts. BMC chemistry 14, 46. https://doi.org/10.1186/s13065-020-00700-7.